Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дегідрування парафінів у моноолефіниСодержание книги
Поиск на нашем сайте
Дегідруванням олефінів одержують изобутен і вищі олефіни. При виробництві бутадієну-1,3 та ізопрену ця реакція є першою стадією двохстадійного процесу дегідрування. Дегідрування парафінів у моноолефіни в термодинамічному відношенні більш сприятливо, чим дегідрування алкілароматчних вуглеводнів і олефінів. Тому при припустимій температурі (6000С) не потрібно знижувати парціальний тиск і процес ведуть без розведення, при тиску лише небагато перевищуючому атмосферний. При дегидрировании парафинов С4 і С5 утвориться суміш ізомерних олефінів, наприклад, з бутану виходить бутен-1, цис- і транс-бутен-2:
СН2=СН-СН2-СН3
ï СН3-С=С-СН3 і СН3-С=С-СН3 ï ï ê Н Н Н
Крім того, виходять відповідні дієны, але в невеликій кількості, тому що умови для їх утворення несприятливі. Побічно протікає крекінг, ізомеризація, коксоутворення. У відношенні реакцій розщеплення парафіни більш реакційноздібні, ніж олефіни, тому нижчих вуглеводнів (СН4, С2Н4, С2Н6 та ін.) утвориться більше. Вважається, що ізомеризація в основному відбувається з олефінами, причому ізомерні олефіни (изобутен або н-пентен) частково гідруються. У продуктах реакції тому знаходяться ще ізомерні парафіни (ізобутан і н-пентен), які утворюють значну кількість коксу за рахунок реакцій ущільнення олефінів і дієнів, розкладання вуглеводнів на вуглець і водень: CnH2n+2 CnH2n CnH2n-2 ® кокс
продукти ізомери ізомери крекінгу олефінів парафінов
Каталізатори повинні бути активні у відношенні основної реакції, але по-можливості не прискорювати процеси крекінгу, ізомеризації і закоксовування. Кращими є оксидноалюмохромові каталізатори на основі оксиду алюмінію (Al2O3), що містять 10-40 % Cr2O3 і 2-10 % оксидів лужних металів (Na2O, K2O, Be); останні служать для нейтралізації кислотних центрів оксиду алюмінію, що викликають крекінг та ізомеризацію. Ці каталізатори дуже чутливі до вологи і тому вихідні фракції С4 і С5 не повинні містити більш 1 мг водяних пар у 1 м3.
Алюмохромові каталізатори активні до дегідрування н-бутану та ізопентану при температурі 500-6500С, підвищення температури веде до посиленого розвитку побічних реакцій, що мають більш високу енергію активації. Оптимальною вважають температуру 560-5900С – при дегідруванні н-бутану та 520-5600С – при дегідруванні найбільш активного ізопентану. Селективність падає при підвищенні ступеня конверсії вихідного парафіну (головним чином через уповільнення дегідрування при наближенні до рівноваги), тому її обмежують величиною 40-45 %. У зазначених умовах селективність процесу по н-бутену складає приблизно 75 %, по ізопентану – 70 %. Однак, алюмохромові каталізатори швидко закоксовуються і потрібне періодичне випалювання з них коксу повітрям при температурі 600-6500С. Через високу ендотермічність процесу під час відсутності розріджувача-теплоносія спочатку застосовували трубчасті реактори, що обігріваються топковими газами, чергуючи періоди дегідрування парафинов і регенерації каталізатора. Тепер використовуються системи з псевдозрідженим мікросферичним каталізатором. У них скомбіновані регенеративний принцип використання тепла і безперервна регенерація каталізатора (схема флюїд-реактора). Каталізатор виходить з реактора дезактивованим і надходить у регенератор, де повітрям випалюється кокс. За рахунок екзотермічності останньої реакції каталізатор розігрівається і знову надходить у реактор, де виконує додаткову роль теплоносія, що компенсує витрати тепла на ендотермічну реакцію дегідрування. У реакторах із псевдозрідженим каталізатором відбувається значне перемішування реакційної суміші, а це знижує продуктивність і селективність. Тому реактор постачають горизонтальними тарілками провального типу, що значно поліпшує показники процесу. Регенерований каталізатор надають на верхні розподільні ґрати, і псевдозріджений шар каталізатору і реакційні гази рухаються протитоком друг до друга, що створює найбільш сприятливий режим процесу (більш гарячий каталізатор контактує з частково прореагувавшою сумішшю і навпаки, чим досягається вирівнювання швидкостей реакції по всьому об’єму). У верхній частині реактора мається «гартівний» змійовик, де реакційні гази прохолоджуються н-бутаном, який йде на дегідрування. Завдяки цьому температура газів швидко знижується до 450-5000С и запобігається їх подальше розкладання.
Регенерацію закоксованого каталізатору здійснюють також у псевдозрідженому шарі при протитоці газу та окиснювача, що надходить під нижні розподільні ґрати регенератору. Оскільки необхідно уникнути перегрівів, що ведуть до дезактивації каталізатора, регенерацію проводять сумішшю повітря з газами згорання палива, що містить 2-3 % (об.) кисню. При цьому оксид хрому все-таки частково окиснюється в CrО3 і, при відновленні останнього в реакторі, утворюється вода, що шкідливо впливає на властивості каталізатору. Щоб уникнути цього в десорбер регенератора надають топковий газ, що відновлює каталізатор, і ще нижче - азот, отдуваючий пари води і газу згорання. Після цього регенерований каталізатор при температурі 640-6500С підхоплюється транспортуючим газом і повертається до реактору. Технологічний процес дегідрування парафінів у відповідні олефіни складає три основні стадії: 1.Дегідрування парафінів з регенерацією каталізатора. 2.Виділення бутан-бутенової (або пентан-пентенової) фракції з продуктів реакції. 3.Поділ бутан-бутенової (або пентан-пентенової) фракції з одержанням бутенов (або ізопентенов).
6.2 Дегідрування вищих н-парафінів в олефины С12-С18
Дегідрування вищих н-парафінов в олефины С12-С18 сильно відрізняється за своєю технологією від розглянутого вище процесу. Алюмохромові каталізатори виявилися непридатними, і для проведення процесу були розроблені платинові каталізатори з добавками металів і лугів, нанесених на оксид алюмінію, цеоліти або силікагель. Інша відмінність складається в необхідності розведення суміші воднем, що запобігає швидке закоксовування каталізатора і розвитку послідовних реакцій дегідрування. Мольне відношення водню і н-парафінів складає (6¸8):1 і загальний тиск 0,2-0,4 МПа, що несприятливо позначається на рівноважному ступені конверсії. Тому практичний ступінь конверсії досягає лише 11-14 % при селективності рівної 89-93 %. Дегідрування проводять у реакторі із суцільним стаціонарним шаром каталізатору в адіабатичних умовах при температурі 460-5000С. Після відділення водню і продуктів крекінгу каталізат переробляють двома способами: 1.Направляють на алкілування бензолу з наступним виробництвом сульфонолу і поверненням неперетвореного парафіну на дегідрування. 2.Розділяють його на н-парафіни і н-олефіни за допомогою молекулярних сит, використовуючи н-олефіни для інших синтезів. Одержання вищих н-олефінів з різним положенням подвійних зв'язків методом дегідрування виявилося економічно більш вигідним, чим термічним крекінгом парафинов. Дегідрування олефінів Дегідрування олефінів у термодинамічному відношенні настільки ж несприятливо, як і дегідрування алкілароматичних вуглеводнів. Тому і тут для підвищення рівноважного ступеня конверсії при допутимій температурі (6000С) приходиться розбавляти реагуючу суміш водяною парою. Н-бутени або н-ізопентени, що надходять на дегідрування, незалежно від їх походження (із продуктів піролизу, крекінгу або дегідрування відповідних парафінів) являють собою суміш ізомерів, дегідруються тільки a-олефіни:
СН2=СН-СН2-СН3 СН2=СН-СН=СН2
Для селективності ізомерів необхідна попередня ізомеризація з переміщенням подвійного зв'язку або утворенням поверхневого радикалу з делокалізованими електронами:
СН2=СН-СН2-СН3
[CH3-CHLCHLCH2]·
Крім цих цільових реакцій при дегідруваннІ протікають побічні процеси крекінгу, скелетної ізомеризації і коксоутворення. У результаті крекінгу з олефінів виходять метан і вуглеводні С2 і С3. Ізомеризація н-бутену веде до утворення ізобутена, але ця реакція особливо небажана для ізопентенів, коли отриманні пентени можуть далі дегідрувати у пентадієн-1,3 (пиперілен), а останній здатний заміняти цикл з утворенням циклопентадієну:
(СН3)2С=СН-СН3 «СН3-СН2-СН=СН-СН3 «
СН2 «СН2=СН-СН=СН-СН3 ®
Негативна роль останніх реакцій складається в одержанні домішок, які утрудняють очищення і виділення цільових речовин. При дегідруванні олефінів утворюються продукти ущільнення, кокс. Вважається, що головним їх джерелом є дієни, що схильні до реакцій конденсації з утворенням циклічних систем (дієновий синтез з наступної дегідроконденсацією ароматичних з'єднань). Нарешті, при дегідруванні олефінів за рахунок утворившегося водню виходить невелика кількість парафінів, що крекуються легше, ніж відповідні олефіни. Частина вуглеводнів і коксу піддається також конверсії водяною парою, унаслідок чого в газі утримуються оксиди вуглецю.
парафін «олефіни «дієн «продукти ущільнення і кокс
низчи вуглеводні ізомеролефіни ізомери дієну
Отже, маються рівнобіжні і послідовні шляхи утворення побічних процесів, селективність росте при зниженні двох факторів: температури (через більш високу енергію активації побічних реакцій) і ступеня конверсії; вибір цих величин обумовлений економічними розуміннями. Тому каталізатори повинні прискорити переважно дегідрування та ізомеризацію з переміщенням подвійного зв'язку, не повинні бути малоактивними у відношенні крекінгу, скелетної ізомеризації і коксоутворення. Кращими є кальцийнікельфосфатні каталізатори ИМ-2204 (Са8Ni(PO4)6), що містять промотируючу добавку 2 % Cr2O3, їх випускають у формованном виді для роботи в стаціонарному шарі. Характерна риса – швидке закоксовування і втрата реактивності, тому потрібне часте випалювання коксу. Періоди дегідрування і регенерації чергуються кожні 5 хвилин, попередньо продуваючи реактор водяною парою.
Дегідрування ведуть, розбавляючи вихідну суміш водяною парою в об'ємному співвідношенні 20:1, при об'ємній швидкості по газоподібному вуглеці 150-200 ч-1 і загальному тиску тільки небагато перевищуючому атмосферний (щоб перебороти гідравлічний опір шару каталізатора і наступної апаратури); температура складає 600-6500С, ступінь конверсії – 40-45 %, селективність – 85 % - при дегідруванні н-бутенів. Для ізопентану, більш реакційноздібного і більш схильного до побічних реакцій, температура складає 550-6000С, ступінь конверсії – 40 %, селективність – 84 %. Для проведення процесу використовують реактори зі стаціонарним шаром каталізатора, що не мають поверхонь теплообміну. При цьому пара відіграє роль теплоносія, що не дозволяє суміші надмірно охолоджуватися (перепад температур між входом і виходом складає 30-400С). Крім кальцийнікельфосфатних контактів застосовують залізооксидні каталізатори (К-16), що містять 25-90 % Fe2O3, 2-50 % Cr2O3, до 15 % К2СО3 та інші компоненти. Вони є саморегенеруючими і здатні працювати до 24 годин, після чого регенеруються. На цих каталізаторах процес ведуть при розведенні вихідної суміші водяною парою в об'ємному співвідношенні 10:1, ступінь конверсії складає 17-20 %, селективність – 80-85 %.
|
|||||||||||||||
Последнее изменение этой страницы: 2020-03-02; просмотров: 128; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.67.90 (0.012 с.) |