Наука побеждать: достижение идеального конечного результата 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Наука побеждать: достижение идеального конечного результата



Вспомним задачу N26, которую решал авиаконструктор И.И.Сикорский. В ней содержится противоречие: самолет должен иметь дополнительное шасси, чтобы оно воспринимало нагрузку во время старта, и он не должен иметь дополнительное шасси, чтобы в полете не нести бесполезный груз.

Сикорский разделил противоречивые требования во времени: пусть дополнительное шасси будет только во время разгона, а после взлета оно должно быть отброшено. Был спроектирован специальный механизм сброса дополнительного шасси, но во время решающего старта он не сработал, произошла катастрофа.

Противоречие разрешено верно. В чем же ошибка?! Видимо, наряду с преодолением противоречия, должен быть еще один критерий "качества" решения творческой задачи.

Такой критерий существует в ТРИЗ. Это идеальный конечный результат (ИКР). Суть ИКР: необходимо представить идеальное решение, по которому исходная система должна САМА выполнять требуемое действие без какого-либо усложнения, увеличения массы и размеров, без дополнительных затрат энергии. Все должно происходить само собой, словно по волшебству.

Это предельное, недостижимое требование, цель которого - попытка найти реальное решение задачи, позволяющее как можно ближе подойти к сформулированному ИКР. Чем ближе, тем эффективнее, "сильнее" решение. Часто уже в самой формулировке ИКР содержится подсказка решения.

Вернемся еще раз к задаче N 26 и сформулируем для найденного решения ИКР: дополнительное шасси САМО, без каких-либо механизмов, отделяется от самолета после взлета. В каком случае шасси обязательно отвалится от самолета? Если не будет закреплено! Например, можно выполнить шасси в виде тележки, на которую свободно опирается самолет. Во время отрыва самолета от земли незакрепленная тележка останется на взлетной полосе (см. рис.21). Сбрасывающего механизма нет (нечему сломаться), а шасси отделяется. Такие системы в ТРИЗ называются идеальными.

Кстати, если бы братья Рутан применили в конструкции "Вояждера" подобное решение, то им не пришлось бы пережить несколько неприятных мгновений на старте.

В задаче N 4 о сверлении отверстий в стене содержится противоречие: пыль должна вылетать из отверстия, чтобы не забивались канавки сверла, и не должна вылетать, чтобы не засорялся пол. Один из возможных способов разрешения противоречия - в пространстве: пусть из отверстия пыль вылетает как и раньше, а на полу ее не должно быть. Как это сделать? Можно отсасывать вылетающую из отверстия пыль пылесосом, но это усложняет исходную систему.

Сформулируем ИКР: пыль САМА собирается в определенном месте, не попадая на пол. Возникает простое решение: липкой лентой прикрепить под отверстием бумажный пакет, в который и будет ссыпаться вся пыль.

Следует отметить важную особенность ИКР. Достижение его возможно только для определенных, конкретных условий. Например, если потребуется сверлить отверстия в потолке, то для этого случая решение с пакетом не будет идеальным. Нетрудно представить, как можно снова приблизить его к ИКР.

В задаче N21 требовалось предложить простейшее приспособление, предотвращающее выкипание воды в котелке, висящем над костром. ИКР задачи: котелок САМ снимается с костра после закипания воды. Фантастика? Попробуем рассудить. При кипении вода начинает испаряться, следовательно общий вес котелка с водой уменьшается. Решение почти очевидно! Уравновесим висящий на перекладине котелок с помощью груза, как обычный шлагбаум. При незначительном уменьшении количества воды равновесие нарушится, и котелок приподнимется над костром (см. рис.23). Кипение прекратится.

В задаче N27 требовалось аккуратно брать пинцетом семена, чтобы не повредить их. ИКР задачи: семена САМИ прилипают к пинцету. Как? Можно, например, смочить пинцет липкой жидкостью, правда возникнут затруднения с отделением семян от пинцета. Какое явление еще может обеспечить "прилипание" семян? Например, присасывание воздухом. Так, в изобретении по авторскому свидетельству N1105136 предлагается простая "присоска", состоящая из трубки с тонким отверстием (диаметром меньше зерна), через которое откачивается воздух. К отверстию присасывается только одно зерно! Прекратим откачку воздуха, и оно упадет.

Сформулируем ИКР для задачи N 28: лихач САМ, по собственной воле, снижает скорость, подъезжая к опасному участку дороги. Подумаем, в каких случаях водители обязательно снижают скорость. Например, при приближении в препятствию на дороге, или к участку дороги с большими выбоинами. Первый вариант не подходит - на дороге создается аварийная обстановка. Второй более приемлем, но не рыть же ямы на хорошей дороге. В патенте Великобритании N2146372 предлагается переносная ребристая полоса, которую укладывают перед опасным участком дороги. На такой полосе мчащийся автомобиль начинает так сильно трясти, что любой лихач невольно сбросит газ.

Рассмотрим задачу N 29. Как избежать истирания покрышек шасси о взлетно-посадочную полосу? Ответ очевиден - надо заранее, еще в воздухе раскрутить колеса до посадочной скорости. Можно, конечно, поставить на шасси специальные раскруточные электромоторы, но это приведет к усложнению шасси и нежелательному увеличению веса самолета. ИКР задачи: колеса САМИ раскручиваются во время захода на посадку. Какие внешние источники энергии мы можем для этого использовать? Вспомним, что до посадки выпущенные шасси в течение нескольких минут обдуваются скоростным напором воздуха. Следовательно, надо заставить поток воздуха раскручивать колеса.

Для этого французский изобретатель Х.Оливье предложил устанавливать на боковые поверхности колес небольшие лопатки (патент Франции N2600619, см. рис.24).

* * *

Решите самостоятельно задачи 30, 31, используя принципы разрешения противоречий и понятие ИКР.

Задача N30:

На верхнем этаже дома расположено три выключателя. Один из них включает лампу, находящуюся в подвале этого дома. Ничего не известно о том, что включают два остальных. Требуется определить, какой именно из трех включает лампу (см. рис.25). При этом в подвал можно спуститься только один раз, запрещается использовать какие-либо приборы и привлекать помощников. Как быть?


Рис. 25.

Задача N31:

Путешественник во времени прибыл в начало XX века из далекого будущего, и здесь у него сломалась машина времени. Связи с будущим нет, и спасателям не известно точно время и место аварии. В таких условиях задача отыскания человека в прошлом становится в миллион раз сложнее, чем поиски иголки сена в стогу. Путешественник сам должен сообщить свои координаты. Но телеграмму в будущее не отправишь!

Предложите идею сигнала SOS в будущее. Следует учесть, что такой сигнал должен быть хорошо понятен в будущем, но совершенно не привлекать внимания современников потерпевшего аварию. Как быть?

Алмазные этюды: выбор Цели

Заинтересовавшись алмазной темой, "эвриканцы" начали более тесное знакомство с этим удивительным кристаллом, прямым родственником графита и печной сажи, с его свойствами, историей открытия и применения в технике и т.д.

Так, благодаря особому расположению атомов углерода в кристаллической решетке, алмаз является самым твердым веществом. В то же время он бессилен против мягкого железа. При нагревании железо способно в больших количествах растворять в себе углерод. Вот и получается, что нагреваясь в процессе резания, оно "съедает" самый твердый в мире кристалл.

Кстати, с помощью этого простого химического эффекта советские ученые решили труднейшую проблему механической обработки алмазов (задача N25). В соответствии с предложенным ими термохимическим способом размерной обработки, к алмазу прикладывается тонкая железная пластинка, нагретая до 1000°C. Она растворяет в себе углерод и погружается вглубь алмаза со скоростью до 0,3 мм в час. Меняя форму пластинки, из алмазов можно изготавливать сложнейшие детали, например, шестеренки, которые невозможно изготовить по-другому. Обычный раскаленный гвоздь - вместо многолетнего изнурительного труда древних ювелиров, гравировавших надписи на алмазах по приказу владык!..

Наше рвение в поиске конкретной проблемы на применение алмазов в технике сильно сдерживалось отсутствием таковых у нас. Оставалось одно - попытаться самостоятельно их сделать! Так возникла мысль заняться сложнейшей научно-технической проблемой синтеза алмазов. Цель ясна. С чего начинать? Прежде всего пришлось снова садиться за книги и внимательно изучать историю попыток синтеза алмазов.

Первые искусственные алмазы были получены исследователями в Швеции в 1953 году, а затем, независимо, в лаборатории фирмы "Дженерал электрик" в 1954 году. Оба способа схожи.

Так, согласно патенту США N 2 947 610, графит в смеси с катализатором из железа, марганца и пятиокиси ванадия в течении двух минут сжимают в специальной камере до давления 95 тыс. атмосфер и нагревают электрическим током до температуры 1700°С. За это время углерод сначала растворяется в катализаторе, а затем кристаллизуется в виде мелких алмазов.

Такой способ до наших дней является основным в промышленности. Несмотря на кажущуюся простоту, он требует дорогостоящего оборудования, и получаемые алмазы почти не уступают в цене природным техническим.

В начале 60-х годов советские ученые Б.Дерягин и Б.Спицын и, независимо, В.Эверсол (США) предложили принципиально новый способ синтеза, не требующий огромных давлений. Суть его в том, что углеродсодержащий газ (обычный метан) в смеси с водородом и кислородом разлагают при атмосферном или пониженном давлении, и атомы углерода осаждаются на поверхности мелких затравочных кристаллов алмаза, которые играют роль программы, вынуждающей атомы принимать структуру алмаза.

Этим способом получают мелкие алмазы и поликристаллические пленки. Однако, он имеет низкую скорость синтеза и требуют использования затравочных кристаллов алмаза.

В 1961 году американские исследователи П.Де-Карли и Дж.Джеймисон впервые сумели осуществить прямое превращение графита в алмаз. Вместо дорогостоящей аппаратуры исследователи использовали мощное взрывчатое вещество, одновременно являющееся источником тепла и еще больших, чем при каталитическом способе, давлений (см. рис.27). Графит в течение одной микросекунды сжимался ударной волной до 300000 атмосфер и нагревался до 1200°C; образовывались очень мелкие кристаллики алмазов.

Несмотря на простоту и дешевизну, этот способ все еще не получил распространения. Видимо, причиной тому является обратное превращение алмаза в графит при уменьшении давления. Его можно предотвратить, если образовавшиеся алмазы очень быстро охлаждать сразу после прохождения ударной волны, но осуществить это в условиях взрывной камеры крайне сложно.

С начала 70-х годов развивается еще одно направление синтеза, основанное на прямом переходе графит-алмаз. Ускоритель в глубоком вакууме бомбардирует мишень высокоэнергетическими ионами углерода. В каждой точке столкновения с мишенью возникают местные давления в сотни тысяч атмосфер и температуры в несколько тысяч градусов: атомы углерода кристаллизуются в виде алмазной пленки толщиной в десятки нанометров.

Какое же направление выбрать? Можно попытаться создать более простое оборудование для синтеза. Но значительно интересней найти новое направление!

Обсудив ситуацию, мы уточнили творческую Цель - разработать новый способ и простое устройство для синтеза алмазов. Но не завиральная ли это идея?! Возможно ли это? Существуют ли какие-либо "дыры" в теории и практике синтеза алмазов, которые бы помогли найти новое направление синтеза? И мы начали тщательно сравнивать физико-химические условия синтеза известных способов с общепринятой теорией образования природных алмазов, согласно которой алмазы образуются в верхней мантии Земли на глубинах в несколько сотен километров под действием огромных давлений и температур. Никакого противоречия пока нет!

Но вот мы встретили первую "дыру": ученые института геологии и геофизики СО АН СССР, изучая гранатовые пластинки из Северного Казахстана, обнаружили в них мельчайшие кристаллики алмазов. А гранаты образуются в земной коре, то есть на значительно меньших глубинах и в менее жестких условиях.

Вторую солидную "дыру" мы обнаружили... в собрании сочинений И.А.Ефремова. Комментируя историю своего знаменитого рассказа "Алмазная труба", он упомянул о находках внутри некоторых якутских алмазов тонких веточек растений и других органических веществ! Какое уж тут давление и температура?! Наше внимание привлек тот факт, что из поля зрения исследователей алмазного синтеза выпали условия, возникающие при образовании алмазоносных трубок взрыва, или кимберлитовых трубок, которым в теории отводится роль "подземного лифта", доставляющего алмазы из глубины недр к поверхности.

Типичная трубка представляет собой узкое вулканообразное жерло, уходящее на глубину до одного километра и заполненное алмазоносной породой - кимберлитом. Такие трубки возникали в результате взрывного прорыва земной коры кимберлитовой магмой. При этом на алмазоносные породы действовало высокое статическое давление скопившейся магмы, затем сильнейшая ударная волна, возникшая в результате взрыва. А завершался этот ад резким падением температуры и давления, вызванным расширением прорвавшейся к поверхности породы.

До сих пор исследователи пытались применить для синтеза, так сказать, отдельные "осколки" этого грандиозного процесса (статические и динамические давления). А что если смоделировать полные условия, сопутствующие образованию алмазной трубы, и таким путем попытаться осуществить синтез алмазов?!

Еще раз скорректировали Цель: создать простую установку, моделирующую природные условия алмазной трубы, при которых, возможно (?), могут быть получены алмазы; во всяком случае, это не противоречит известному о превращениях углерода.

Шансов на успех почти нет. Но Цель "учебная", и даже создание работающей "искусственной алмазной трубы" можно будет считать значительным успехом на пути к ней...

Итак, творческая Цель ясна, необходимо выявить творческие задачи, решение которых позволит ее достигнуть. Требуется взрыв! И "эвриканцы" с энтузиазмом принялись делиться своими познаниями в этой области. Но оглядевшись, быстро охладели. Мда, штаб-квартира "Эврики" - читальный зал библиотеки - мало подходила для подобных экспериментов... Но другого нет. Кроме того, "ад" должен быть малогабаритным, т.е. вся установка должна помещаться на письменном столе.

* * *

Задача А-1:

Газообразные продукты взрыва, распространяясь с огромной скоростью, создают ударную волну со сверхвысокими давлениями. В случае разрушения взрывная камера превратится в бомбу... Требуется "ручной" взрыв, который за ее пределами должен немедленно терять свою силу. Давление в малогабаритной камере после взрыва должно резко снижаться. Обычные взрывчатые вещества не подходят для этих целей. Как быть?

Кроме мощной ударной волны в камере требуется создать высокое статическое давление. Простейший способ - приложить усилие к телу с очень малой площадью опоры. Например, если швейную иглу с диаметром острия в 0,01 мм прижать к поверхности с усилием всего 100гр, то давление под острием теоретически могло бы достигнуть 120 тыс. атмосфер! Правда, объем, где развивалось бы высокое давление, был бы микроскопически мал. Объем камеры для синтеза алмазов должен быть в миллиард раз больше - кубические сантиметры!

* * *

Задача А-2:

Высокие статические давления, необходимые для синтеза алмазов, создаются могучими гидравлическими прессами с усилиями в тысячи и десятки тысяч тонн, высотой с дом в несколько этажей. Требуется простой способ получения высоких статических давлений в малогабаритной камере. Как быть?

Камера, в которой действует высокое давление, должна быть очень прочной. Обычно ее изготавливают из высокопрочных сталей и сверхпрочного карбида вольфрама. Мы же, в лучшем случае, можем использовать обычные конструкционные стали, имеющие значительно меньшую прочность.

Отсутствие высокопрочных материалов следует восполнить какой-нибудь "хитростью". Например, известно, что прочность толстого стального стержня примерно в пять раз меньше прочности тонкой проволоки из того же материала: технология изготовления проволоки обеспечивает значительно меньшее количество дефектов кристаллической решетки на единицу сечения. Образно говоря, атомы металла в тонком слое работают дружно, а в большой толпе присутствует много лентяев.

* * *

Задача А-3:

Расчеты показывают, что при прочих равных условиях толстостенная камера способна выдержать большее давление в сравнении с тонкостенной. Но последняя обладает более высокой удельной прочностью. Если бы толстостенной камере удалось придать прочностные свойства тонкостенной, то давление в ней можно было бы увеличить в несколько раз. Как повысить ее рабочее давление?

Сформулировав третью задачу, все пришли к единодушному мнению, что их решения вполне достаточно для разработки проекта установки "Искусственная алмазная труба". Как жестоко мы ошибались. Дальнейшие события в пух и прах разметали эти радужные представления...

 

ГЛАВА 5. СТРЕЛЫ МЕЧТЫ

Между первым интересом к конкретной области науки или техники и возникновением стремления самостоятельно внести в нее что-либо новое пролегает огромная дистанция. Множество людей до и после А.Л.Чижевского смотрело в телескоп, и... осталось астрономами-любителями, так и не сделав подобно ему решающего шага. Еще большее число людей совершало и совершает экскурсии в подводный мир, и... не бросилось при этом "очертя голову навстречу неизведанному", подобно Кусто, осталось бесчисленной армией любителей подводного плавания. Почему? Что им помешало? Что способно превратить одиночную искру первого интереса в могучий костер творческой Цели?

Попытаемся найти ответ на эти вопросы, рассмотрев четвертый и пятый этапы становления творческой личности.



Поделиться:


Последнее изменение этой страницы: 2019-05-20; просмотров: 82; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.125.139 (0.029 с.)