Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Раздел 10. Конвективный теплообмен (КТО)Содержание книги
Поиск на нашем сайте
Конвективный теплообмен (теплоотдача) Основной закон конвективного теплообмена Обычно жидкие и газообразные теплоносители нагреваются или охлаждаются при соприкосновении с поверхностями твердых тел. Например, дымовые газы в печах отдают теплоту нагреваемым заготовкам, а в паровых котлах – трубам, внутри которых греется или кипит вода; воздух в комнате греется от горячих приборов отопления и т.д. Процесс теплообмена между поверхностью твердого тела и жидкостью называется теплопередачей, а поверхность тела, через которую переносится теплота, - поверхностью теплообмена или теплоотдающей поверхностью. Согласно закону Ньютона и Рихмана тепловой поток в процессе теплоотдачи пропорционален площади поверхности теплообмена F и разности температур поверхности tc и жидкости tж: Q=aF½tc-tж½ В процессе теплоотдачи независимо от направления теплового потока Q (от стенки к жидкости или наоборот) значение его можно считать положительным, поэтому разность tc-tж берут по абсолютной величине. Коэффициент пропорциональности a называется коэффициентом теплоотдачи; его единица измерения Вт/(м2×К). Он характеризует интенсивность процесса теплоотдачи. Численное значение его равно тепловому потоку от единичной поверхности теплообмена при разности температур поверхности и жидкости в 1 К. Коэффициент теплоотдачи обычно определяют экспериментально, измеряя тепловой поток Q и разность температур Dt= tc-tж в процессе теплоотдачи от поверхности известной площади F. Затем по формуле Q=aF½tc-tж½ рассчитывают a. При проектировании аппаратов (проведении тепловых расчетов) по этой формуле определяют одно из значений Q, F или Dt. При этом a находят по результатам обобщения ранее проведенных экспериментов. Коэффициент теплоотдачи a зависит от физических свойств жидкости и характера ее движения. Различают естественное и вынужденное движение (конвекцию) жидкости. Вынужденное движение создается внешним источником (насосом, вентилятором, ветром). Естественная конвекция возникает за счет теплового расширения жидкости, нагретой около теплоотдающей поверхности в самом процессе теплообмена. Она будет тем сильнее, чем больше разность температур Dt= tc-tж и температурный коэффициент объемного расширения: где n=1/r - удельный объем жидкости. Для газов, которые в большинстве случаев приближенно можно считать идеальными, коэффициент объемного расширения можно получить, воспользовавшись уравнением Клапейрона: b=1/Т температурный коэффициент объемного расширения капельных жидкостей значительно меньше, чем газов. В небольшом диапазоне изменения температур, а значит, и удельных объемов производную в уравнении можно заменить отношением конечных разностей параметров холодной (с индексом «ж») и прогретой (без индексов) жидкости: разность плотностей rж-r=brж(t-tж) приводит к тому, что на любой единичной объем прогретой жидкости будет действовать подъемная сила Fп, равная алгебраической сумме выталкивающей архимедовой силы А=-rж×g и силы тяжести G=r×g: Fп=A+G=-g(rж-r)=-brж(t-tж). Пограничный слой Рассмотрим процесс теплоотдачи от потока теплоносителя к продольно омываемой им пластине. Скорость и температура набегающего потока постоянна и равны wж и tж. Как уже отмечалось, частицы жидкости, непосредственно соприкасающиеся с поверхностью, адсорбируются («прилипают»). Соприкасаясь с неподвижным слоем, тормозятся и более удаленные от поверхности слои жидкости. Зона потока, в которой наблюдается уменьшение скорости (w<wж), вызванное вязким взаимодействием жидкости с поверхностью, называется гидродинамическим пограничным слоем. За пределами пограничного слоя течет невозмущенный поток. На начальном участке гидродинамический слой очень тонок (в лобовой точке с координатой х=0 толщина равна 0) и течение в нем ламинарное – струйки жидкости движутся параллельно, не перемешиваясь. При удалении от лобовой точки толщина пограничного слоя растет. На некотором расстоянии ламинарное течение становится неустойчивым. В пограничном слое появляются вихри (турбулентные пульсации скорости). Постепенно турбулентный режим течения распространяется почти на всю толщину гидродинамического пограничного слоя. Лишь около самой поверхности пластины в турбулентном пограничном слое сохраняется тонкий ламинарный, или вязкий, подслой, где скорость невелика и силы вязкости гасят турбулентные вихри. Аналогичным образом осуществляется и тепловое взаимодействие потока с пластиной. Частицы жидкости, «прилипшие» к поверхности, имеют температуру, равную температуре поверхности tс. Соприкасающиеся с этими частицами движущиеся слои жидкости охлаждаются, отдавая им свою теплоту. От соприкосновения с этими слоями охлаждаются следующие более удаленные от поверхности слой потока – так формируется тепловой пограничный слои, в пределах которого температура меняется от tс на поверхности до tж в невозмущенном потоке. С удалением от лобовой точки количество охлаждающейся у пластины жидкости увеличивается, и толщина теплового пограничного слоя возрастает. В общем случае толщины теплового и гидродинамического слоев не равны, но часто достаточно близки друг к другу, особенно в газах. При ламинарном течении тепловой поток от охлаждающейся в пограничном слое жидкости переносится к поверхности только за счет теплопроводности т.е. a~l/dт. Основное термическое сопротивление сосредоточено в тонком ламинарном подслое. Чтобы получить аналитическое выражение для коэффициента теплоотдачи, необходимо интегрировать систему дифференциальных уравнений, описывающих движение жидкости и перенос теплоты в ней. Даже при существенных упрощениях это возможно лишь в отдельных случаях при ламинарном течении жидкости, поэтому обычно для получения расчетных зависимостей прибегают к экспериментальному изучению явления. Числа подобия Основная трудность, возникающая при экспериментальном исследовании конвективного теплообмена, заключается в том, что коэффициент теплоотдачи зависит от многих параметром. Чтобы уменьшить число их согласно теории подобия объединяют в меньшее число переменных, называемых числами подобия (они безразмерны). Каждое из безразмерных чисел имеет определенный физический смысл. Их принято обозначать первыми буквами фамилий ученых, внесших существенный вклад в изучение процессов теплопереноса и гидродинамики, и называть в честь этих ученых. Число Нуссельта: представляет собой безразмерный коэффициент теплоотдачи. Число Рейнольдса Re=wжl/v Выражает отношение сил инерции (скоростного напора) Fи=r×w2ж/2 к силам вязкого трения Fm~m×wж/l. При течении жидкости в трубах ламинарный режим на стабилизированном участке наблюдается до Re=w×d/v=2300, а при Re>104 устанавливается развитый турбулентный режим (здесь d – внутренний диаметр трубы). Число Прандтля: Pr=c×r×v/l Состоит из величин характеризующих теплофизические свойства вещества и по существу само является теплофизической константой вещества. Значение число Pr приводится в справочниках. В случае естественной конвекции скорость жидкости в дали от поверхности wж=0 и соответственно Re=0, но на теплоотдачу будет влиять подъемная сила Fп. Это приведет к появлению другого безразмерного параметра – числа Грасгофа: Gr=g×b(tc-tж)l3/v2 Оно характеризует отношение подъемной силы, возникающей вследствие теплового расширения жидкости, к силам вязкости. ЛЕКЦИЯ 14 Основы массообмена Большинство веществ, используемых в технике, представляет собой многокомпонентные системы. Нефтепродукты и нефть – это смесь различных углеводородов. Поэтому многие процессы теплообмена сопровождаются переносом массы. Если в некоторой изолированной системе содержится смесь компонентов с первоначально неоднородным распределением концентраций, то в ней возникает перенос массы компонентов смеси, стремящейся к установлению равновесного (равномерного) поля концентраций. Перенос вещества в смеси, обусловленный тепловым хаотическим движением микрочастиц вещества (молекул, ионов, атомов), называется молекулярной диффузией. Молекулярная диффузия вследствие неоднородного распределения концентраций в смеси называется концентрационной диффузией. При перемещении, т.е. конвекции, масса компонента переносится макроскопическим элементами смеси. Перенос массы за счет совместного действия молекулярной диффузии и конвективного переноса вещества называется конвективным массообменом. Конвективный массообмен между жидкой (твердой) поверхностью и окружающей средой называется массоотдачей. Плотность потока массы при концентрационной диффузии определяют уравнением, аналогичным уравнению Ньютона-Рихмана: где bМ - коэффициент массоотдачи, отнесенный к разности концентраций диффундирующего вещества, м/с; mic и mio – концентрации вещества на поверхности массоотдачи и в окружающей среде. Поток массы от поверхности площадью F определяют по формуле:
|
||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 322; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.153.19 (0.006 с.) |