Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Термодинамические процессы идеальных газовСодержание книги
Поиск на нашем сайте
В закрытых системах Основными процессами, весьма важными и в теоретическом, и в прикладном отношениях, являются: изохорный, протекающий при постоянном объеме; изобарный, протекающий при постоянном давлении; изотермический, происходящий при постоянной температуре; адиабатный — процесс, при котором отсутствует теплообмен с окружающей средой, и политропный, удовлетворяющий уравнению . Метод исследования процессов, не зависящий от их особенностей и являющийся общим, состоит в следующем: выводится уравнение процесса, устанавливающее связь между начальными и конечными параметрами рабочего тела в данном процессе; вычисляется работа изменения объема газа; определяется количество теплоты, подведенной (или отведенной) к газу в процессе; определяется изменение внутренней энергии системы в процессе; определяется изменение энтропии системы в процессе. Изохорный процесс. При изохорном процессе выполняется условие dv = 0 или v = const. Из уравнения состояния идеального газа следует, что p/T=R/v= const, т. е. давление газа прямо пропорционально его абсолютной температуре: . Рисунок 5.1 - Изображение изохорного процесса в р,v- и T, s -координатах Работа расширения в этом процессе равна нулю, так как dv= 0. Количество теплоты, подведенной к рабочему телу в процессе 12 при , определяется как: При переменной теплоемкости , где — средняя массовая изохорная теплоемкость в интервале температур от t 1 до t 2. Так как 1= 0, то в соответствии с первым законом термодинамики и Поскольку внутренняя энергия идеального газа является функцией только его температуры, то полученные формулы справедливы для любого термодинамического процесса идеального газа. Изменение энтропии в изохорном процессе определяется по формуле , т. е. зависимость энтропии от температуры на изохоре при сv = const имеет логарифмический характер. Изобарный процесс. Из уравнения состояния идеального газа при р =const находим , или , т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре (закон Гей-Люссака, 1802 г.). На рисунке изображен график процесса. Рисунок 5.2 - Изображение изобарного процесса в p,v - и T,s -координатах Из выражения следует, что . Так как и , то одновременно Количество теплоты, сообщаемое газу при нагревании (или отдаваемое им при охлаждении): , где — средняя массовая изобарная теплоемкость в интервале температур от t 1до t 2при = const . Изменение энтропии при ср = const согласно равно , т. е. температурная зависимость энтропии при изобарном процессе тоже имеет логарифмический характер, но поскольку ср>сv, то изобара в Т, s-диаграмме идет более полого, чем изохора. Изотермический процесс. При изотермическом процессе температура постоянна, следовательно, pv = RT = const, или , т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении — падает (закон Бойля — Мариотта, 1662 г.). Графиком изотермического процесса в р,v –координатах является равнобокая гипербола, для которой координатные оси служат асимптотами. Работа процесса: . Так как температура не меняется, то внутренняя энергия идеального газа в данном процессе остается постоянной () и вся подводимая к газу теплота полностью превращается в работу расширения:
Рисунок 5.3 - Изображение изотермического процесса в р, v- и T, s -координатах.
При изотермическом сжатии от газа отводится теплота в количестве, равном затраченной на сжатие работе. Изменение энтропии в изотермическом процессе выражается формулой . Адиабатный процесс. Процесс, происходящий без теплообмена с окружающей средой, называется адиабатным, т. е. . Для того чтобы осуществить такой процесс, следует либо теплоизолировать газ, т. е. поместить его в адиабатную оболочку, либо провести процесс настолько быстро, чтобы изменение температуры газа, обусловленное его теплообменом с окружающей средой, было пренебрежимо мало по сравнению с изменением температуры, вызванным расширением или сжатием газа. Как правило, это возможно, ибо теплообмен происходит значительно медленнее, чем сжатие или расширение газа. Уравнения первого закона термодинамика для адиабатного процесса принимают вид: . Поделив первое уравнение на второе, получим Интегрируя последнее уравнение при условии, что k =cp/cv= const, находим После потенцирования имеем . * Это и есть уравнения адиабаты идеального газа при постоянном отношении теплоемкостей (k = const). Величина называется показателем адиабаты. Подставив cp = cv-R, получим k. Согласно классической кинетической теории теплоемкость газов не зависит от температуры, поэтому можно считать, что величина k также не зависит от температуры и определяется числом степеней свободы молекулы. Для одноатомного газа k =1,66 для двухатомного k =1,4, для трех- и многоатомных газов k =l,33. Поскольку k> 1, то в координатах р, v линия адиабаты идет круче линии изотермы: при адиабатном расширении давление понижается быстрее, чем при изотермическом, так как в процессе расширения уменьшается температура газа. Рисунок 5.4 - Изображение адиабатного процесса в р, v- и Т, s-координатах Определив из уравнения состояния, написанного для состояний 1 и 2, отношение объемов или давлений, получим уравнение адиабатного процесса в форме, выражающей зависимость температуры от объема или давления: ; . Работа расширения при адиабатном процессе согласно первому закону термодинамики совершается за счет уменьшения внутренней энергии и может быть вычислена по одной из следующих формул: . Так как и , то . В данном процессе теплообмен газа с окружающей средой исключается, поэтому q=0. Выражение показывает, что теплоемкость адиабатного процесса равна нулю. Поскольку при адиабатном процессе = 0, энтропия рабочего тела не изменяется (ds =0 и s =const). Следовательно, на Т, s-диаграмме адиабатный процесс изображается вертикалью. Политропный процесс и его обобщающее значение. Любой произвольный процесс можно описать в р,v -координатах (по крайней мере на небольшом участке) уравнением , подбирая соответствующее значение п. Процесс, описываемый таким уравнением, называется политропным. Показатель политропы n может принимать любое численное значение в пределах от , но для данного процесса он является величиной постоянной. Из уравнения Клапейрона нетрудно получить выражения, устанавливающие связь между р, v и Т в любых двух точках на политропе, аналогично тому, как это было сделано для адиабаты: ; ; . (5.1) Работа расширения газа в политропном процессе имеет вид . Так как для политропы в соответствии с (5.1) , то (5.2) Уравнение (5.1) можно преобразовать к виду: Количество подведенной (или отведенной) в процессе теплоты можно определить с помощью уравнения первого закона термодинамики: . Поскольку , то , где представляет собой теплоемкость идеального газа в политропном процессе. При постоянных cv, k и п теплоемкость с n = const, поэтому политропный процесс иногда определяют как процесс с постоянной теплоемкостью. Изменение энтропии . Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов. Ниже приведены характеристики термодинамических процессов.
На рисунке показано взаимное расположение на р, V- и Т, s-диаграммах политропных процессов с разными значениями показателя политропы. Все процессы начинаются в одной точке («в центре»).
Рисунок 5.5 - Изображение основных термодинамических процессов идеального газа в р, v- и Т, s-координатах
Изохора (п= ± ) делит поле диаграммы на две области: процессы, находящиеся правее изохоры, характеризуются положительной работой, так как сопровождаются расширением рабочего тела; для процессов, расположенных левее изохоры, характерна отрицательная работа. Процессы, расположенные правее и выше адиабаты, идут с подводом теплоты к рабочему телу; процессы, лежащие левее и ниже адиабаты, протекают с отводом теплоты. Для процессов, расположенных над изотермой (= 1), характерно увеличение внутренней энергии газа; процессы, расположенные под изотермой, сопровождаются уменьшением внутренней энергии. Процессы, расположенные между адиабатой и изотермой, имеют отрицательную теплоемкость, так как и du (а следовательно, и dT), имеют в этой области противоположные знаки. В таких процессах , поэтому на производство работы при расширении тратится не только подводимая теплота, но и часть внутренней энергии рабочего тела.
Эксергия Основываясь на втором начале термодинамики, установим количественное соотношение между работой, которая могла бы быть совершена системой при данных внешних условиях в случае протекания в ней равновесных процессов, и действительной работой, производимой в тех же условиях, при неравновесных процессах. Рассмотрим изолированную систему, состоящую из горячего источника с температурой Ti, холодного источника (окружающей среды) с температурой То и рабочего тела, совершающего цикл. Работоспособностью (или эксергией) теплоты Q 1, отбираемой от горячего источника с температурой Т1, называется максимальная полезная работа, которая может быть получена за счет этой теплоты при условии, что холодным источником является окружающая среда с температурой То. Из предыдущего ясно, что максимальная полезная работа L'макс теплоты Q 1 представляет собой работу равновесного цикла Карно, осуществляемого в диапазоне температур T1 –T0. , где . Таким образом, эксергия теплоты Q1 ,
т. е. работоспособность теплоты тем больше, чем меньше отношение . При она равна нулю. Полезную работу, полученную за счет теплоты Q 1 горячего источника, можно представить в виде , где — теплота, отдаваемая в цикле холодному источнику (окружающей среде) с температурой . Если через обозначить приращение энтропии холодного источника, то , тогда . (5.3) Если бы в рассматриваемой изолированной системе протекали только равновесные процессы, то энтропия системы оставалась бы неизменной, а увеличение энтропии холодного источника равнялось бы уменьшению энтропии горячего. В этом случае за счет теплоты Q1 можно было бы получить максимальную полезную работу что следует из уравнения (5.3). Действительное количество работы, произведенной в этих же условиях, но при неравновесных процессах, определяется уравнением (5.3). Таким образом, потерю работоспособности теплоты можно записать как , но разность представляет собой изменение энтропии рассматриваемой изолированной системы, поэтому . (5.4) Величина определяет потерю работы, обусловленную рассеиванием энергии вследствие неравновесности протекающих в системе процессов. Чем больше неравновесность процессов, мерой которой является увеличение энтропии изолированной системы , тем меньше производимая системой работа. Уравнение (5.4) называют уравнением Гюи — Стодолы по имени французского физика М. Гюи, получившего это уравнение в 1889 г., и словацкого теплотехника А. Стодолы, впервые применившего это уравнение. ЛЕКЦИЯ 6
|
|||||||||||||||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 311; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.48.226 (0.007 с.) |