Ультразвук. Особенности распространения ультразвука в различных средах. Бегущие и стоящие волны. Отражение ультразвука. Акустическая кавитация. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ультразвук. Особенности распространения ультразвука в различных средах. Бегущие и стоящие волны. Отражение ультразвука. Акустическая кавитация.



Ультразвук неслышимые человеческим ухом упругие волны, частоты которых превышают 15-20 кГц. Ультразвук содержится в шуме ветра и моря, издается и воспринимается рядом животных (летучие мыши, рыбы, насекомые и др.), присутствует в шуме машин. Применяется в практике физических, физико-химических и биологических исследований, а также в технике для целей дефектоскопии, навигации, подводной связи и тд.

Физические свойства и особенности распространения ультразвука. По своей физической природе Ультразвук представляет собой упругие волны и в этом он не отличается от звука. Частотная граница между звуковыми и ультразвуковыми волнами поэтому условна; она определяется субъективными свойствами человеческого слуха и соответствует усреднённой верхней границе слышимого звука. Однако благодаря более высоким частотам и, следовательно, малым длинам волн имеет место ряд особенностей распространения. Ультразвук в газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники.

К числу важных нелинейных явлений, возникающих при распространении интенсивного Ультразвук в жидкостях, относится акустическая кавитация — рост в ультразвуковом поле пузырьков из имеющихся субмикроскопических зародышей газа или пара в жидкостях до размеров в доли мм, которые начинают пульсировать с частотой Ультразвук и захлопываются в положительной фазе давления. При захлопывании пузырьков газа возникают большие локальные давления порядка тысяч атмосфер, образуются сферические ударные волны.

Малая длина ультразвуковых волн является основой для того, чтобы рассматривать их распространение в ряде случаев методами геометрической акустики. Физически это приводит к лучевой картине распространения. Используя явление отражения Ультразвук на границе различных сред, конструируют ультразвуковые приборы для измерения размеров изделий (например, ультразвуковые толщиномеры), для определения уровня жидкости в больших, недоступных для прямого измерения ёмкостях. Ультразвук сравнительно малой интенсивности (до ~0,1 вт/см2) широко используется для целей неразрушающего контроля изделий из твёрдых материалов (рельсов, крупных отливок, качественного проката и т.д.)

Стоячие волны — частный случай интерференции. Стоячие волны образуются в результате наложения двух волн одинаковой амплитуды, фазы и частоты, распространяющихся в противоположных направлениях.

Амплитуда в пучностях стоячей волны равна удвоенной амплитуде каждой из волн. Поскольку интенсивность волны пропорциональна квадрату ее амплитуды, это означает, что интенсивность в пучностях в 4 раза больше интенсивности каждой из волн или же в 2 раза больше суммарной интенсивности двух волн. Здесь нет нарушения закона сохранения энергии, поскольку в узлах интенсивность равна нулю.

Бегущая волна — волна, которая при распространении в среде переносит энергию (в отличие от стоячей волны), напр. упругая волна в стержне, столбе газа, жидкости, электромагнитная волна вдоль длинной линии, в волноводе …

 

Эффект Доплера в акустике.

Эффект Доплера описывает сдвиг частоты сигнала в зависимости от относительного движения источника и приемника. Так волна, посланная источником, который удаляется от приемника, будет приниматься им на меньшей частоте по сравнению с волной от неподвижного источника или от источника, приближающегося к приемнику. Если же приемник приближается к неподвижному источнику, то частота принимаемой им волны будет больше по сравнению с неподвижным приемником или приемником, удаляющимся от источника.

 

 

 

На эффекте Доплера основаны радиолокационные лазерные методы измерения скоростей различных объектов на Земле (например автомобиля, самолета и др.). Лазерная анемометрия является незаменимым методом изучения потока жидкости или газа. Хаотическое тепловое движение атомов светящегося тела также вызывает уширение линий в его спектре, которое возрастает с увеличением скорости теплового движения, т.е. с повышением температуры газа. Это явление можно использовать для определения температуры раскаленных газов.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 1029; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.232.169.110 (0.018 с.)