Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение бесконечно большой функции.Содержание книги Поиск на нашем сайте
Функцию называют бесконечно большой приХ, стремящемся к Х0, если для любой последовательности ()значений аргумента, стремящейся к Х0,соответствующая последовательность значений функции является бесконечно большой. Записывают: . Первый замечательный предел. lim (sinx/x) =1 при x→0 Второй замечательный предел Lim(1+ 1/n)n = e x→∞ 21. Дайте определения односторонних пределов функции в точке Число А называется правым пределом функции f(x) при х → а, если для любого ξ > 0 существует такое δ, что для всех х, удовлетворяющих неравенству а < х < а + δ, выполняется неравенство | f(x) - А |< ξ. Число А называется левым пределом функции f(x) при х → а, если для любого ξ > 0 существует такое δ, что для всех х, удовлетворяющих неравенству а - δ < х < а, выполняется неравенство | f(x) - А |< ξ. 1. Приведите примеры: а) послед-и, сходящейся к числу 3; б) ограниченной послед-и, не имеющей предела. Число а называется пределом числовой послед-и {Xn}, если для любого положительного числа ε существует номер N из множества Ñ такой, что для любого n ≥ N выполняется неравенство: | Xn – a | < ε √ ε > 0, сущ. N є Ñ, √ n ≥ N => | Xn – a | < ε А) Xn = (3n+1)/n, lim (n→∞) (3n+1)/n = 3 б) Xn = (-1)ⁿ - ограничена (-1), не имеет предела 2. Докажите, исходя из определения предела послед-и, что lim (n→∞) 2n/n+4 = 2. | Xn – a | < ε |2n/n+4 - 2| < ε, |-8/n+4| < ε, 8/n+4 < ε, n+4/8 >1/ε, n > (8 - 4ε)/ε, N = [8/ε - 4] +1 Докажите, что сходящаяся послед-ь имеет только один предел От противного Предп, что некоторая послед-ь {Xn} имеет 2 разл предела а и b, a ≠ b. Выберем столь малые окрестности т. a и b, чтобы они не имели общ точек. Т.к. lim Xn = a, все Xn, начиная с нек номера n1, содержатся в выбран окрестности т. а; точно так же из lim Xn = b, следует, что все Xn, начиная с нек номера n2, содержатся в выбранной окрестности т. b. Положим, n0 = max {n1, n2}. Тогда числа Xn с номерами n≥ n0 должны принадлежать как первой, так и второй окрестности, что невозможно, так как окрестности не имеют общих точек. Докажите ограниченность сход послед-и док-во: Пусть lim Xn = a. Положим ε = 1 и найдем номер n0, начиная с которого | Xn – a | < 1, т. е. -1>Xn – a<1 для n≥ n0. Отсюда следует а-1>Xn<а+1 для всех n≥ n0. Заменим отрезок [а-1; а+1] таким отрезком [А;В], чтобы в него попали не только числа Xn, n≥ n0, но и все числа х1, х2,…хn0. Тогда будем иметь хn є [А;В] для всех n є N, что означает ограниченность множества {Хn}. 5. Дайте определение послед-и, ограниченной сверху. Может ли предел послед-и, ограниченной снизу числом 6, быть равным: а) 5,98; б) 6,02 Послед-ь называется ограниченной сверху, если существует число m, такое, что любой элемент Xn этой послед-и удовлетворяет неравенству m ≥ Xn. Предел послед., огранич. сверху числом 6, не может быть равным 6,02, но может быть равным 5,98, так как мы можем брать только числа меньше 6 (6≥Xn). 6. Что можно сказать о пределе суммы двух сходящихся послед-ей? Приведите пример расходящихся послед-ей, сумма которых сходится. 1) Алгебраическая сумма двух сходящихся послед-ей {Хn} и {Уn} есть сходящаяся послед-ь, предел которой равен сумме пределов послед-ей {Хn} и {Уn}. lim (n→∞) Xn = a, lim (n→∞) Уn = b: lim (n→∞) (Xn + Уn) = a + b. 2) an = (-1)ⁿ: -1; 1; -1; 1…- расход. bn = (-1)^(n+1): 1; -1; 1; -1…- расход. lim (n→∞) (an + bn) = 0 7. Что можно сказать о пределе произведения двух сходящихся послед-ей? Приведите пример расходящихся послед-ей, произведение которых сходится. 1) Произведение двух сходящихся послед-ей {Хn} и {Уn} есть сходящаяся послед-ь, предел которой равен произведению пределов послед-ей {Хn} и {Уn}. lim (n→∞) Xn = a, lim (n→∞) Уn = b: lim (n→∞) (Xn * Уn) = a * b. 2) an = (-1)ⁿ: -1; 1; -1; 1…- расход. bn = -1/2, 1/2, -2/3, 2/3, -3/4, 3/4: (-n/ n + 1)ⁿ lim (n→∞) (an * bn) = 1 – сход. (1/2, 1/2, 2/3, 2/3…). 8. Может ли послед-ь {Xn + Yn} сходиться, если послед-ь {Xn} сходится, а послед-ь {Yn} расходится? Ответ обоснуйте. нет, не может: С + ∞ = ∞ Xn = (1/2)ⁿ: 1/2, 1/4… Yn = (-1)ⁿ: -1, 1.. -1 + ½ = -1/2; -1 + 1/8 = -7/8 – сход. к (-1) 1 + ¼ = 1 ¼; 1 + 1/16 = 1 1/16 – сход. к 1 {Xn + Yn} – расход. 9. Дайте определение бесконечно малой (бм) послед-и. Приведите примеры бм послед-ей, отношение которых: а) является бм послед-ью; б) не является бм послед-ью. Послед-ь {αn} называется бм, если lim (n→∞) αn = 0. Для любого ε > 0, сущ. N, такое, что для любого n ≥ N | αn | < ε. а) 1/n, 1/ ^4√n – бм послед-и: ^4√n/ n = n^-3/4 – бм послед-ь б) n/ ^4√n = n^3/4 - не бм послед-ь Докажите, что произведение бм и ограниченной послед-ей является бм послед-ью. док-во: Пусть {Хn} – ограниченная, а {αn} – бм послед-и. Доказать, что {Xn * αn} – бм. Так как {Хn} ограниченна, то существует число А > 0 такое, что любой элемент Хn удовлетворяет неравенству | Хn | ≤ А. Возьмем любое ε > 0. Поскольку {αn} – бм, то для положительного числа ε/А существует номер N такой, что при n > N выполняется неравенство | αn | < ε/А. Тогда при n > N |Xn * αn | = |Xn| * | αn | < A * ε/A = ε. Это означает, что послед-ь {Xn * αn} – бм.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 300; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.63.148 (0.008 с.) |