Система холодного цинкования 
";


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Система холодного цинкования



Система холодного цинкования предназначена для усиления антикоррозионных свойств комплексного многослойного покрытия. Система обеспечивает полную катодную (или гальваническую) защиту железных поверхностей от коррозии в различных агрессивных средах

Система холодной оцинковки бывает одно-, двух- или трехупаковочной и включает:

· связующее — известны составы на хлоркаучуковой, этилсиликатной, полистирольной, эпоксидной, уретановой, алкидной (модифицированной) основе;

· антикоррозионный наполнитель — цинковый порошок («цинковая пыль»), с содержанием более 95 % металлического цинка, имеющего размер частиц менее 10 мкм и минимальную степень окисления.;

· отвердитель (в двух- и трех- упаковочных системах)

Одноупаковочные системы холодного цинкования поставляются готовыми к применению и требуют лишь тщательного перемешивания состава перед нанесением. Двух- и трехупаковочные системы могут поставляться в нескольких упаковках и требуют дополнительных операций по приготовлению состава перед нанесением (смешивание связующего, наполнителя, отвердителя).

После приготовления (двух- и трёхупаковочные системы), нанесения состава на защищаемую поверхность металла кистью, валиком, методом пневматического илибезвоздушного распыления и высыхания на поверхности металла образуется цинкнаполненное противокоррозионное покрытие — полимерно-цинковая плёнка, сохраняющая все свойства полимерного покрытия, которое использовалось в качестве связующего, и одновременно обладающая всеми защитными достоинствами обычного цинкового покрытия.

Преимущества системы холодной оцинковки по сравнению со способом горячей гальванизации:

1. Простота и меньшая трудоёмкость технологии нанесения защитного цинкового покрытия. Для нанесения покрытия не требуется специальное оборудование.

2. Возможность антикоррозионной защиты металлоконструкций любых размеров, как в заводских так и в полевых условиях.

3. Возможность исправления непосредственно на месте абразивных повреждений покрытия и дефектов, возникающих при сварке металлоконструкций.

4. Экологически чистый процесс нанесения покрытия: нет необходимости производить работы в горячем цеху.

5. Создание на поверхности железа гибкого слоя цинка (не образующего микротрещин при изгибании металлоизделия).

Система холодного цинкования применяется во всех видах промышленности и в быту, где требуется надёжная и долговечная защита железных поверхностей от коррозии.

Помимо использования в качестве грунтовочного слоя в комплексном многослойном покрытии система холодной оцинковки может применяться как самостоятельное антикоррозийное покрытие металлических поверхностей.

[ править ] Газотермическое напыление

Для борьбы с коррозией используют также методы газотермического напыления.
С помощью газотермического напыления на поверхности металла создается слой из другого металла/сплава, обладающий более высокой стойкостью к коррозии (изолирующий) или наоборот менее стойкий (протекторный). Такой слой позволяет остановить коррозию защищаемого металла. Суть метода такова: газовой струей на поверхность изделия на огромной скорости наносят частицы металлической смеси, в результате чего образуется защитный слой толщиной от десятков до сотен микрон. Газотермическое напыление также применяется для продления жизни изношенных узлов оборудования: от восстановления рулевой рейки в автосервисе до нефтедобывающих компаний[5].

[ править ] Термодиффузионное цинковое покрытие

(ГОСТ 9.316-2006). Для эксплуатации металлоизделий в агрессивных средах, необходима более стойкая антикоррозионная защита поверхности металлоизделий.Термодиффузионное цинковое покрытие является анодным по отношению к чёрным металлам и электрохимически защищает сталь от коррозии. Оно обладает прочным сцеплением (адгезией) с основным металлом за счет взаимной диффузии железа и цинка в поверхностных интерметаллитных фазах, поэтому не происходит отслаивания и скалывания покрытий при ударах, механических нагрузках и деформациях обработанных изделий.

Диффузионное цинкование, осуществляемое из паровой или газовой фазы при высоких температурах (375—850 °C), или с использованием разрежения (вакуума) — при температуре от 250 °C, применяется для покрытия крепёжных изделий, труб, деталей арматуры и др. конструкций. Значительно повышает стойкость стальных, чугунных изделий в средах, содержащих сероводород (в том числе против сероводородного коррозионного растрескивания), промышленной атмосфере, морской воде и др. Толщина диффузионного слоя зависит от температуры, времени, способа цинкования и может составлять 0,01—1,5 мм. Современный процесс диффузионного цинкования позволяет образовывать покрытие на резьбовых поверхностях крепёжных изделий, без затруднения их последующего свинчивания. Микротвёрдость слоя покрытия Hμ = 4000 — 5000 МПа. Диффузионное цинковое покрытие также значительно повышает жаростойкость стальных и чугунных изделий, при температуре до 700 °C. Возможно получение легированных диффузионных цинковых покрытий, применяемое для повышения их служебных характеристик.

 

Цинкование

Цинкование — это процесс нанесения цинка или его сплава на металлическое изделие для придания его поверхности определённых физико-химических свойств, в первую очередь высокого сопротивления коррозии. Цинкование — наиболее распространённый и экономичный процесс металлизации, применяемый для защиты железа и его сплавов от атмосферной коррозии. На эти цели расходуется примерно 40 % мировой добычи цинка. Толщина покрытия должна быть тем больше, чем агрессивнее окружающая среда и чем длительнее предполагаемый срок эксплуатации. Цинкованию подвергаются стальные листы, лента, проволока, крепёжные детали, детали машин и приборов, трубопроводы и др. металлоконструкции. Декоративного назначения цинковое покрытие обычно не имеет; некоторое улучшение товарный вид приобретает после пассивирования оцинкованных изделий в хроматных, или фосфатных растворах, придающих покрытиям радужную окраску. Наиболее широко используется оцинкованная полоса, изготовляемая на автоматизированных линиях горячего цинкования, то есть методом погружения в расплавленный цинк. Методы распыления и металлизация позволяют покрывать изделия любого размера (например, мачты электропередач, резервуары, мостовые металлоконструкции, дорожные ограждения). Электролитическое цинкование ведётся в основном из кислых и щёлочно-цианистых электролитов; специальные добавки позволяют получать блестящие покрытия.

56.

ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, химические СОЕДИНЕНИЯ, содержащие химический элемент УГЛЕРОД. Их насчитывается приблизительно в сто раз больше, чем неорганических соединений. К органическим соединениям относятся УГЛЕВОДОРОДЫ, базовая структура, которая, соединяясь с атомами других элементов (например, кислородом или азотом), образует большое количество органических соединений, включая и те, что являются жизненно необходимыми.

Виды гибридизации

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp2-гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp3-гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28', что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

57.

Классификация

Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.

Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.

[ править ]Характерные свойства

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.

1. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.

2. Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Целый ряд физико-химических свойств в первом приближении изменяется симбатно[ неизвестный термин ] по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами.

Изотермия — постоянство температуры тела— в процессе развития организма развивается постепенно. У новорожденного ребенка способность поддерживать постоянство температуры тела слабая. Вследствие этого может наступить охлаждение (гипотермия) или перегревание (гипертермия) организма при таких температурах окружающей среды, которые не оказывают влияния на взрослого человека. Кроме того, даже небольшая мышечная работа, например связанная с длительным криком ребенка, может повысить температуру тела.

58.

В свою очередь, углеводороды достаточно широко распространены в природе и могут быть выделены из различных природных источников: нефти, попутного нефтяного и природного газа, каменного угля. Рассмотрим их подробнее.

Основные современные виды топлива

[ править ] Твёрдые топлива

· Древесина, древесная щепа, древесные пеллеты

· Горючий сланец

· Сапропель

· Торф

· Уголь

· Битуминозные пески

· Порох

· Соединения азота

· Твёрдое ракетное топливо

[ править ] Жидкие топлива

Просты в транспортировке, но при этом велики потери при испарении, разливах и утечках.

· Нефтяные топлива

· Дизельное топливо (газойль, соляровое масло)

· топливо печное бытовое

· Керосин

· Лигроин

· Бензин, газолин

· Масла

· Сланцевое масло

· Отработавшее машинное масло

· Растительные (рапсовое, арахисовое) или животные масла (жиры)

· Спирты

· Этанол

· Метанол

· Пропанол

· Жидкое ракетное топливо

· Эфиры

· (Изомеры) спиртов

· Метил-трет-бутиловый эфир (МТБЭ)

· Диметиловый эфир (ДМЭ)

· жирных кислот

· Этерифицированные растительные масла (биодизель)

· Эмульсии

· Водотопливная эмульсия

· Этиловый спирт в бензинах

· Масла в бензинах

· Синтетические топлива, производимые на основе процесса Фишера-Тропша

· Из угля (CTL)

· Из биомассы (BTL)

· Из природного газа (GTL)

[ править ] Газообразные топлива

Ещё более транспортабельны, при этом ещё большие потери, а также при нормальных условиях ниже энергетическая плотность.

· Пропан

· Бутан

· Метан, природный газ, метан угольных пластов,сланцевый газ, рудничный газ, болотный газ, биогаз, лэндфилл-газ, гидрат метана

· Водород

· Сжатый (компримированный) природный газ (CNG)

· Продукты газификации твёрдого топлива

· Угля — (синтез-, генераторный, коксовый) газы, возможна подземная газификация углей

· Древесины

· Смеси

· Пропан-бутановая смесь (LPG)

· Смесь водорода и природного газа (HCNG)

[ править ] Дисперсные системы, растворы

· Аэрозоли

· Угольная пыль

· Алюминиевая, магниевая пыль

· Пены

· Газодизель (смесь природного газа с дизельным топливом)

· Смесь водорода с бензином

· Суспензии

· Водоугольное топливо

· Водонитратное топливо («жидкий порох»)

59.

Нефть (из тур. neft, от персидск. нефт [1]) — природная маслянистая горючая жидкость, состоящая из сложной смесиуглеводородов и некоторых других органических соединений. По цвету, нефть бывает красно-коричневого, иногда почти чёрного цвета, хотя иногда встречается и слабо окрашенная в жёлто-зелёный цвет и даже бесцветная нефть; имеет специфический запах, распространена в осадочных породах Земли. Сегодня нефть является одним из важнейших длячеловечества полезных ископаемых.

Цель переработки нефти (нефтепереработки) — производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и т. д.) и сырья для последующей химической переработки.

Первичные процессы

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой ее физическое разделение на фракции. Сначала промысловая нефть проходит первичный технологический процесс очистки добытой нефти от нефтяного газа, воды и механических примесей - этот процесс называется первичнойсепарацией нефти[1].

[ править ] Подготовка нефти

Нефть поступает на НПЗ в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

[ править ] Атмосферная перегонка

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти

ПРЕДЕЛЫ ВЫКИПАНИЯ, °С ВЫХОД ФРАКЦИИ, % (МАСС.)
Газ 1,1 %
Бензиновые фракции
<62°С 4,1%
62—85°С 2,4%
85—120°С 4,5%
120—140°С 3,0%
140—180°С 6,0%
Керосин
180—240°С 9,5%
Дизельное топливо
240—350°С 19,0%
Мазут 49,4%
Потери 1,0%

[ править ] Вакуумная дистилляция

Основная статья: Вакуум-дистилляция

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

[ править ]Вторичные процессы

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

· Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т.д.

· Облагораживающие: риформинг, гидроочистка, изомеризация и т.д.

· Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т.д.

[ править ] Риформинг

Основная статья: Каталитический риформинг

Каталитический риформинг - каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С[2]. В результате риформинга бензиновая фракция обогащается ароматическими соединениями и его октановое число повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения ароматических углеводородов.

[ править ] Гидроочистка

Основная статья: Гидроочистка

[ править ] Каталитический крекинг

Основная статья: Каталитический крекинг

Каталитический крекинг - процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

[ править ] Гидрокрекинг

Основная статья: Гидрокрекинг

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит газ риформинга. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

[ править ] Коксование

Основная статья: Коксование

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

[ править ] Изомеризация

Основная статья: Изомеризация

Процесс получения изоуглеводородов (изобутан, изопентан, изогексан, изогептан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изопрен из изопентана, МТБЭ и изобутилен из изобутана) и высокооктановых компонентов автомобильных бензинов.

[ править ] Алкилирование

Основная статья: Алкилирование

Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения,спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

[ править ] Экстракция ароматики

60.

Горюче-смазочные материалы (сокращённо ГСМ) — нефтепродукты, к которым относят различные виды горючего и смазки, в основном в применении к автотранспорту:топливо (бензин, дизельное топливо, сжиженный нефтяной газ, сжатый природный газ), смазочные материалы (моторные, трансмиссионные и специальные масла, пластичные смазки), специальные жидкости (тормозные и охлаждающие).

Кре́кинг (англ. cracking, расщепление) — высокотемпературная переработка нефти и её фракций с целью получения, как правило, продуктов меньшей молекулярной массы — моторных топлив, смазочных масел и т. п., а также сырья для химической и нефтехимической промышленности. Крекинг протекает с разрывом связей С—С и образованием свободных радикалов иликарбанионов. Одновременно с разрывом связей С—С происходит дегидрирование, изомеризация, полимеризация и конденсация как промежуточных, так и исходных веществ. В результате последних двух процессов образуются т. н. крекинг-остаток (фракция стемпературой кипения более 350 °C) и нефтяной кокс.

Первая в мире промышленная установка непрерывного термического крекинга нефти была создана и запатентована инженером В. Г. Шуховым и его помощником С. П. Гавриловым в 1891 году (патент Российской империи № 12926 от 27 ноября 1891 года). Была сделана экспериментальная установка. Научные и инженерные решения В. Г. Шухова повторены У. Бартоном при сооружении первой промышленной установки в США в 1915—1918 годах. Первые отечественные промышленные установки крекинга построеныВ. Г. Шуховым в 1934 году на заводе «Советский крекинг» в Баку.

Крекинг проводят нагреванием нефтяного сырья или одновременным воздействием на него высокой температуры и катализаторов.

· В первом случае процесс применяют для получения бензинов (низкооктановые компоненты автомобильных топлив) и газойлевых (компоненты флотских мазутов, газотурбинных и печных топлив) фракций, высокоароматизированного нефтяного сырья в производстве технического углерода (сажи), а также альфа-олефинов (термический крекинг); котельных, а также автомобильных и дизельных топлив (висбрекинг); нефтяного кокса, а также углеводородных газов, бензинов и керосино-газойлевых фракций; этилена, пропилена, а также ароматических углеводородов (пиролиз нефтяного сырья).

· Во втором случае процесс используют для получения базовых компонентов высокооктановых бензинов, газойлей, углеводородных газов (каталитический крекинг); бензиновых фракций, реактивных и дизельных топлив, нефтяных масел, а также сырья для процессов пиролиза нефтяных фракций и каталитического риформинга(гидрокрекинг).

Используют также др. виды пиролитического расщепления сырья, например процесс получения этилена и ацетилена действием электрического разряда в метане(электрокрекинг), осуществляемый при 1000—1300 °C и 0,14 МПа в течение 0,01—0,1 с.

Крекинг используют для повышения октанового числа бензина (увеличения массовой доли C8H18).
В ходе каталитического крекинга протекают также процессы изомеризации алканов.

61.

Бензи́н — горючая смесь лёгких углеводородов с температурой кипения от 30 до 200 °C. Плотность около 0,75 г/см³. Теплотворная способность примерно 10 500 ккал/кг (46 МДж/кг, 34,5 МДж/литр). Температура замерзания ниже −60 °C в случае использования специальных присадок.

Получение

Бензин получают путем возгонки и отбора фракций нефти, выкипающих в определенных температурных пределах; до 100 °C — бензин I сорта, до 110 °C — бензин специальный, до 130 °C — бензин II сорта, до 265 °C — керосин («метеор»), до 270 °C — керосин обыкновенный, примерно до 300 °C — производится отбор масляных фракций. Остаток считается мазутом.

Повышение качества автомобильного бензина

Повысить качество автомобильных бензинов можно за счет следующих мероприятий:

· отказа от применения в составе бензинов соединений свинца;

· снижения содержания в бензине серы до 0,05 %, а в перспективе до 0,003 %;

· снижения содержания в бензине ароматических углеводородов до 45 %, а в перспективе до 35 %;

· нормирования концентрации фактических смол в бензинах на месте применения на уровне не более 5 мг на 100 см³;

· деления бензинов по фракционному составу и давлению насыщенных паров на 8 классов с учетом сезона эксплуатации автомобилей и температуры окружающей среды, характерной для конкретной климатической зоны. Наличие классов позволяет выпускать бензин со свойствами, оптимальными для реальных температур окружающего воздуха, что обеспечивает работу двигателей без образования паровых пробок при температурах воздуха до +60 °С, а также гарантирует высокую испаряемость бензинов и легкий пуск двигателя при температурах ниже −35 °С;

· введения моющих присадок, не допускающих загрязнения и осмоления деталей топливной аппаратуры. Наиболее массовые отечественные бензины А-76, АИ-93 (ГОСТ 2084-77) и АИ-92 (ТУ 38.001165-97) не отвечают указанным требованиям по содержанию свинца (для этилированных бензинов), массовой доли серы, отсутствию регламентации содержания бензола и моющих присадок.

[ править ]Применение

В конце XIX века бензин не находил лучшего применения, чем антисептическое средство (продавался в аптеках) и топлива для примусов. Зачастую из нефти отгоняли только керосин, а все остальное, включая бензин, либо сжигали, либо просто выбрасывали. Однако с появлением двигателя внутреннего сгорания, работающего по циклу Отто, бензин стал одним из главных продуктов нефтепереработки, хотя по мере распространения дизельных двигателей благодаря их более высокому КПД на первый план выходит дизельное топливо.

Бензин применяется как топливо для карбюраторных и инжекторных двигателей, высокоимпульсное ракетное топливо (Синтин), при производстве парафина, какрастворитель, как горючий материал, сырье для нефтехимии прямогонный бензин или бензин газовый стабильный (БГС).

[ править ]Разновидности бензина

[ править ] Автомобильные бензины

В России автомобильные бензины выпускаются по ГОСТ 2084-77, ГОСТ Р 51105-97 и ГОСТ Р 51866-2002.

Автомобильные бензины подразделяются на летние и зимние (в зимних бензинах содержится больше низкокипящих углеводородов).

Основные марки автомобильных бензинов ГОСТ 2084-77:

· А-72 — с октановым числом по моторному методу не менее 72;

· А-76 — с октановым числом по моторному методу не менее 76 (позже был наименован АИ-80 в соответствии с исследовательским методом);

· АИ-91 — с октановым числом по исследовательскому методу не менее 91;

· АИ-92 — с октановым числом по исследовательскому методу не менее 92;

· АИ-95 — с октановым числом по исследовательскому методу не менее 95;

· АИ-98 — с октановым числом по исследовательскому методу не менее 98;

[ править ] Авиационные бензины

Авиационный бензин отличается от автомобильного более высокими требованиями к качеству, обычно имеет более высокое октановое число (что характеризует его детонационную стойкость на бедной смеси) и подразделяется по «сортности» (что характеризует его детонационную стойкость на богатой смеси).

Для авиабензина основными показателями качества являются:

· детонационная стойкость (определяет пригодность бензина к применению в двигателях с высокой степенью сжатия рабочей смеси без возникновения детонационного сгорания)

· фракционный состав (говорит об испаряемости бензина, что необходимо для определения его способности к образованию рабочей топливовоздушной смеси; характеризуется диапазонами температур выкипания (40—180(°)С) и давлений насыщенных паров (29—48 кПа))

· химическая стабильность (способность противостоять изменениям химического состава при хранении, транспортировке и применении)

Основной способ производства авиационных бензинов — прямая перегонка нефти, каталитический крекинг или риформинг без добавки или с добавкой высококачественных компонентов, этиловой жидкости и различных присадок.

Классификация авиационных бензинов основывается на их антидетонационных свойствах, выраженных в октановых числах и в единицах сортности. Сорта российских авиационных бензинов маркируются по ГОСТ 1012-72, как правило, дробью: в числителе — октановое число или сортность на бедной смеси, в знаменателе — сортность на богатой смеси, например, Б-91/115 и Б-95/130. Встречается маркировка авиационных бензинов и по одним октановым числам, например, Б-70 (изготовляется по ТУ 38.101913-82) и Б-92 (изготовляется по ТУ 38.401-58-47-92).[1]

Бензины Б-91/115, Б-95/130 и Б-92 этилированные, а бензин Б-70 — нет (он используется в основном как растворитель).

[ править ] Бензины-растворители

Основная статья: Нефтяной растворитель

Нашли применение узкие легкокипящие продукты каталитического риформинга (БР-2) или прямой перегонки малосернистых нефтей (БР-1) (ГОСТ 443-76) в качестве растворителя для приготовления резиновых клеев при производстве печатных красок, мастик; для обезжиривания электрооборудования, тканей, кожи, поверхностей металлов перед нанесением металлических покрытий; для промывки подшипников, арматуры перед консервацией, в производстве искусственных мехов; для изготовления быстросохнущих масляных красок и электроизоляционных лаков; для извлечения канифоли из древесины, приготовления спирто-бензиновой смеси для промывки печатных плат в электротехническом производстве.

Экстракционные бензины (температура кипения 70-95 °C) прямой перегонки малосернистых нефтей применяются для экстракции растительных масел, извлечения жира из костей, никотина из махорочного листа, как растворитель в резиновой и лакокрасочной промышленности.

Малосернистый деароматизированный экстракционный бензин (температура кипения 70-85 °C) применяется для выработки масел в районах с жарким климатом (высокой испаряемостью).

Получаемый из рафината каталитического риформинга (температура кипения 105—125 °C) растворитель БЛХ, содержащий в основном парафиновые углеводороды линейного и изомерного строения, производится специально для лесохимической промышленности и применяется для извлечения канифоли из древесной щепы, иногда при приготовлении резиновых клеев и лаковых рецептур типографских красок.

Узкую фракцию прямой перегонки (температура кипения 110—185 °C) (озокеритовый растворитель) применяют для экстракции озокерита из руд.

Широкое применение получил Нефрас С 50/170 (ГОСТ 8505-80) (широкая фракция прямой перегонки малосернистых нефтей или рафината каталитического риформинга) в качестве растворителя при производстве искусственных кож, для химической чистки тканей, промывки деталей перед ремонтом, для смывания с деталей противокоррозийных покрытий и др.

Ксилольный рафинат каталитического риформинга и толуола с содержанием ароматики до 30 % — Нефрас САР применяется при производстве монолитных конденсаторов.

Особенно распространён бензин-растворитель для лакокрасочной промышленности — Уайт-спирит.

Нефрас С 150/200 узкой фракции прямой перегонки сернистых нефтей, близок по свойствам и применяется так же, как и уайт-спирит, однако содержит больше серы и имеет более резкий запах.

В народе легкокипящие бензины-растворители бытового применения часто называют «Калоша», кроме того, на российском рынке встречается продукт Нефрас С2 80/120 схожий по составу с БР1 и товарным наименованием «Калоша».

[ править ] Нафта (бензины для нефтехимии)

Основная статья: Лигроин

Нафта представляет собой фракцию нефти с пределами выкипания до 180 градусов Цельсия, состоят преимущественно из нормальных парафинов С5-С9. Получают прямой перегонкой нефти с добавлением небольшого количества вторичных фракций. Применяется как сырьё пиролиза для получения этилена на нефтехимических предприятиях, для блендинга и для экспорта. В РФ известны следующие товарные названия нафты:

· Бензин газовый стабильный (БГС)

· Бензин для химической промышленности

· Бензин прямогонный (БП)

· Дистиллят газового конденсата легкий (ДГКл)

· Прочие продукты-аналоги

  • Лучше всего хранить смазочные материалы в помещении при относительно постоянной умеренной температуре. Любое хранилище, открытое или закрытое, необходимо расположить таким образом, чтобы оно удовлетворяло следующим условиям:
  • 1. Удобный подъезд для транспортных средств.
    2. Возможность свободного маневрирования транспортных средств при разгрузке.
    3. Наличие рядом с хранилищем разгрузочной площадки со всем необходимым оборудованием.
    4. Возможность вскрытия емкостей и отлива масел в чистом, не запыленном месте.
    5. Легкость доставки смазочных материалов к основным местам использования.
    6. Простота инвентаризации, легкость визуального контроля состояния емкостей.
    7. Наличие специального места для пустых бочек и возвратной тары.
  • Открытое хранение
  • Погодные условия (кроме экстремальных температур и проникновения воды) не влияют на большинство смазочных материалов, поэтому в течение ограниченного времени их можно хранить на открытых площадках.
  • Однако, если температура может опуститься ниже 0°С, следует обеспечить защиту смазочных материалов, чувствительных к воздействию мороза (например, масло-водяных эмульсий или разбавленных водой жидкостей). Ни в коем случае не следует хранить вне помещений следующие материалы:
  • 1. Электроизоляционные масла
    2. Рефрижераторные (холодильные) масла
    3. Белые и медицинские масла
    4. Масла, смазки и жидкости
    5. Пластичные смазки
    6. Чистые СОЖ, содержащие жирные масла или соединения, которые при очень низкой температуре
    могут загустеть и расслоиться
    7. Продукты с пищевым допуском
  • Рекомендуется открывать емкости со смазочными материалами и в последующем хранить их под навесом. Это снижает риск их загрязнения: в неполные бочки легче проникает влага или происходит конденсация. При открытом хранении бочки подвержены температурным колебаниям, которые вызывают соответствующие изменения внутреннего давления. В результате тара, даже имеющая уплотнения, «дышит», что со­здает условия для попадания влаги внутрь. Такая возможность возрастает, если бочка стоит пробкой вверх, т.к. верхняя часть бочки удерживает дождевую влагу.
  • Вода, находящаяся на бочке, может также привести к появлению ржавчины и смыть маркировку. Вот почему бочки следует хранить в наклонном положении, на боку или пробкой вниз. Пробки наклоненных и горизонтально расположенных бочек устанавливаются в положение «3 часа» и «9 часов» для того, чтобы сальники бочки соприкасались с маслом.
  • В любом случае бочки должны стоять не на земле, а располагаться на стеллажах или полках, на значительном расстоянии от поверхностной влаги. Категорически запрещается ставить бочки на поверх­ность, содержащую коррозионный клинкер.
  • Емкости следует регулярно осматривать с целью выявления коррозии, течи в швах и уплотнениях и проверки состояния маркировки.
  • Особое внимание следует обратить на хранение малых емкостей со смазочными материалами (бочонки и ведра). Они не предназначены для хранения в суровых погодных условиях. При вынужденном от­крытом хранении их следует поместить на стеллажи под навесом или защитить от дождя брезентом, обеспечив тем не менее хорошую циркуляцию воздуха.
  • Хранение в помещениях
  • Такое хранение всегда предпочтительнее. Если площадь закрытых хранилищ ограничена, ее нужно использовать для хранения малых емкостей, смазочных материалов, которые не выдерживают мороза, для открытых емкостей, а также для особых категорий смазочных материалов (см. Открытое хранение). В помещениях редко наблюдаются такие низкие температуры, которые могли бы оказать отрицательное влияние на смазочные материалы. Следует избегать чрезмерного местного перегрева от паровых труб, печей и т.п., так как это может вызвать термодеструкцию или испарение продуктов, содержа­щих растворитель.
  • Если только


Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 248; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.46.36 (0.004 с.)