ТОП 10:

Дискретная модуляция аналоговых сигналов



Одной из основных тенденций развития сетевых технологий является передача в одной сети как дискретных, так и аналоговых по своей природе данных. Источниками дискретных данных являются компьютеры и другие вычислительные устройства, а источниками аналоговых данных являются такие устройства, как телефоны, видеокамеры, звуко- и видеовоспроизводящая аппаратура. На ранних этапах решения этой проблемы в территориальных сетях все типы данных передавались в аналоговой форме, при этом дискретные по своему характеру компьютерные данные преобразовывались в аналоговую форму с помощью модемов.

Однако по мере развития техники съема и передачи аналоговых данных выяснилось, что передача их в аналоговой форме не позволяет улучшить качество принятых на другом конце линии данных, если они существенно исказились при передаче. Сам аналоговый сигнал не дает никаких указаний ни о том, что произошло искажение, ни о том, как его исправить, поскольку форма сигнала может быть любой, в том числе и такой, которую зафиксировал приемник. Улучшение же качества линий, особенно территориальных, требует огромных усилий и капиталовложений. Поэтому на смену аналоговой технике записи и передачи звука и изображения пришла цифровая техника. Эта техника использует так называемую дискретную модуляцию исходных непрерывных во времени аналоговых процессов.

Дискретные способы модуляции основаны на дискретизации непрерывных процессов как по амплитуде, так и по времени. Рассмотрим принципы искретной модуляции на примере импулъсно-кодовой модуляции, ИКМ (Pulse Amplitude Modulation, РАМ), которая широко применяется в цифровой телефонии.

Амплитуда исходной непрерывной функции измеряется с заданным периодом - за счет этого происходит дискретизация по времени. Затем каждый замер представляется в виде двоичного числа определенной разрядности, что означает дискретизацию по значениям функции - непрерывное множество возможных значений амплитуды заменяется дискретным множеством ее значений. Устройство, которое выполняет подобную функцию, называется аналого-цифровым преобразователем (АЦП). После этого замеры передаются по каналам связи в виде последовательности единиц и нулей. При этом применяются те же методы кодирования, что и в случае передачи изначально дискретной информации, то есть, например, методы, основанные на коде B8ZS или 2В 1Q.

На приемной стороне линии коды преобразуются в исходную последовательность бит, а специальная аппаратура, называемая цифро-аналоговым преобразователем (ЦАП), производит демодуляцию оцифрованных амплитуд непрерывного сигнала, восстанавливая исходную непрерывную функцию времени.

Дискретная модуляции основана на теории отображения Найквиста - Котельникова. В соответствии с этой теорией, аналоговая непрерывная функция, переданная в виде последовательности ее дискретных по времени значений, может быть точно восстановлена, если частота дискретизации была в два или более раз выше, чем частота самой высокой гармоники спектра исходной функции.

Если это условие не соблюдается, то восстановленная функция будет существенно отличаться от исходной.

Преимуществом цифровых методов записи, воспроизведения и передачи аналоговой информации является возможность контроля достоверности считанных с носителя или полученных по линии связи данных. Для этого можно применять те же методы, которые применяются для компьютерных данных (и рассматриваются более подробно далее), - вычисление контрольной суммы, повторная передача искаженных кадров, применение самокорректирующихся кодов.

 

23Канальный уровеньотвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно идентифицировать отправителя и получателя во всем множестве абонентов, подключенных к общему физическому каналу. В функции данного уровня также входит упорядочивание передачи с целью обеспечения возможности параллельного использования одного физического канала несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.

ФУНКЦИИ

Получение доступа к среде передачи. Обеспечение доступа — важнейшая функция канального уровня. Она требуется всегда, за исключением случаев, когда реализована полносвязная топология (например, два компьютера, соединенных через кроссовер, или компьютер со свичом в полнодуплексном режиме).

Выделение границ кадра. Эта задача также решается всегда. Среди возможных решений этой задачи — резервирование некоторой последовательности, обозначающей начало или конец кадра.

Аппаратная адресация (или адресация канального уровня). Требуется в том случае, когда кадр могут получить сразу несколько адресатов. В локальных сетях аппаратные адреса (MAC-адреса) применяются всегда.

Обеспечение достоверности принимаемых данных. Во время передачи кадра есть вероятность, что данные исказятся. Важно это обнаружить и не пытаться обработать кадр, содержащий ошибку. Обычно на канальном уровне используются алгоритмы контрольных сумм, дающие высокую гарантию обнаружения ошибок.

Адресация протокола верхнего уровня. В процессе декапсуляции указание формата вложенного PDU существенно упрощает обработку информации, поэтому чаще всего указывается протокол, находящийся в поле данных, за исключением тех случаев, когда в поле данных может находится один-единственный протокол.Большинство функций канального уровня выполняются устройствами передачи данных (например, сетевым адаптером). Протоколы для соединений типа "точка-точка"

Существенным отличием протоколов для соединений типа "точка-точка" является отсутствие средств адресации абонентов. Это объясняется тем, что одновременно к сети может быть подключено всего два устройства, например, два компьютера. Поэтому заголовки кадров данных протоколов этой группы не содержат адресных полей.

Простейшим примером протоколов данной группы является протокол SLIP (Serial Line Internet Protocol). Единственными служебными полями кадра протокола SLIP являются поля, позволяющие определить начало и конец кадра. Данный протокол может совместно работать только с одним протоколом сетевого уровня – протоколом IP, поскольку в заголовке кадра не предусмотрено поля идентификации протокола сетевого уровня. Кроме того, протокол не располагает средствами обнаружения ошибок, возникающих при передаче данных, что делает его малоэффективным при построении сетей на основе каналов низкого качества, например, телефонных линий.

В связи с этим протокол SLIP в настоящее время почти не используется при построении реальных сетей. Для подключения к Интернет по обычным телефонным линиям конечных пользователей в основном применяется более совершенный протокол канального уровня PPP (Point-to-Point Protocol). В отличие от SLIP протокол PPP обладает большей функциональностью и обеспечивает:

возможность использования нескольких протоколов сетевого уровня;

механизм согласования параметров устройств передачи данных;

механизм сжатия передаваемой информации с целью повышения эффективности и надежности передачи;

механизм обнаружения и исправления ошибок;

механизмы защиты, предотвращающие несанкционированные подключения.

Протоколы для сетей сложных топологий

Протоколы канального уровня этой группы являются более сложными, чем протоколы, использующиеся в сетях типа "точка-точка", так как вынуждены выполнять ряд дополнительных функций. Основными функциями являются:

Выделение на всем множестве компьютеров, подключенных к сети, конкретного абонента, с которым осуществляется информационный обмен, то есть адресация;

 

Асинхронная передача.

Обычно достаточно обеспечить синхронизацию на указанных двух уровнях - битовом и кадровом, - чтобы передатчик и приемник смогли обеспечить устойчивый обмен информацией. Однако при плохом качестве линии связи (обычно это относится к телефонным коммутируемым каналам) для удешевления аппаратуры и повышения надежности передачи данных вводят дополнительные средства синхронизации на уровне байт.

Асинхронным описанный режим называется потому, что каждый принятый байт может быть смещен во времени относительно переданного байта на случайный промежуток времени. Это резко снижает требования к характеристикам системы передачи. В то же время, такая асинхронность передачи не влияет на корректность принимаемых данных, так как в начале каждого байта происходит дополнительная синхронизация приемника с источником за счет битов "старт". Более "свободные" временные допуски определяют низкую стоимость оборудования асинхронной системы.

Синхронная передача.

При синхронном режиме передачи пользовательские данные собираются в кадр, который предваряется байтами синхронизации). Старт-стопные биты между соседними байтами отсутствуют. Байт синхронизации - это байт, содержащий заранее известный код, например 0111110, который оповещает приемник о приходе кадра данных. Его обычно называют флагом. При его получении приемник должен войти в байтовый синхронизм с передатчиком, то есть правильно понимать начало очередного байта кадра. Иногда применяется несколько синхробайт для обеспечения более надежной синхронизации приемника и передатчика. Так как при передаче длинного кадра у приемника могут появиться проблемы с синхронизацией бит, то в этом случае используются самосинхронизирующие коды. (См. раздел "Передача данных сигналами постоянного тока).

Синхронные протоколы выполняют следующие действия, не предусмотренные асинхронными протоколами:

разбивают данные на блоки;

добавляют управляющую информацию;

проверяет данные на наличие ошибок.

Основные протоколы синхронной передачи:

SDLC-протокол синхронного управления каналом;

HDLC-протокол высокоуровнего управления каналом;

BISYNC-протокол двоичной синхронизированной связи;

Синхронная связь используется, в основном, на выделенных цифровых линиях, и в домашних условиях, как правило, не применяется. Символьно-ориентированные протоколы

Символьно-ориентированные протоколы используются в основном для передачи блоков отображаемых символов, например текстовых файлов. Так как при синхронной передаче нет стоповых и стартовых битов, для синхронизации символов необходим другой метод. Синхронизация достигается за счет того, что передатчик добавляет два или более управляющих символа, называемых символами SYN, перед каждым блоком символов. Однако такой простой способ выделения начала и конца кадра хорошо работал только в том случае, если внутри кадра не было символов STX и ЕТХ. При подключении к компьютеру алфавитно-цифровых терминалов такая задача действительно не возникала.

Бит-ориентированные протоколы

Потребность в паре символов в начале и конце каждого кадра вместе с дополнительными символами DLE означает, что символьно-ориентированная передача не эффективна для передачи двоичных данных, так как приходится в поле данных кадра добавлять достаточно много избыточных данных.

 







Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.234.245.125 (0.007 с.)