Основы передачи дискретных данных 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основы передачи дискретных данных

Поиск

Любая сетевая технология должна обеспечить надежную и быструю передачу дис­кретных данных по линиям связи. И хотя между технологиями имеются большие различия, они базируются на общих принципах передачи дискретных данных, ко­торые рассматриваются в этой главе. Эти принципы находят свое воплощение в методах представления двоичных единиц и нулей с помощью импульсных или синусоидальных сигналов в линиях связи различной физической природы, мето­дах обнаружения и коррекции ошибок, методах компрессии и методах коммута­ции.

Линии связи

2.1.1. Типы линий связи

Линия связи (рис. 2.1) состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежуточной аппаратуры. Синонимом термина линия связи (line) являет­ся термин канал связи (channel).

 


Рис. 2.1. Состав линии связи

 

 

Физическая среда передачи данных (medium) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через кото­рые распространяются электромагнитные волны.


В зависимости от среды передачи данных линии связи разделяются на следую­щие (рис. 2.2.):

 

 

Рис. 2.2. Типы линий связи

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии исполь­зуются и для передачи компьютерных данных. Скоростные качества и помехоза-щищенность этих линий оставляют желать много лучшего. Сегодня проводные

линии связи быстро вытесняются кабельными.

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того,

кабель может быть оснащен разъемами, позволяющими быстро выполнять присо- единение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коак- сиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой (twisted pair). Витая пара существует в экранированном варианте (Shielded Twistedpair, STP), когда пара мед­ных проводов обертывается в изоляционный экран, и неэкранированном (Unshielded Twistedpair, UTP), когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Суще­ствует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения — для локальных сетей, для глобальных сетей, для кабельно­го телевидения и т. п. Волоконно-оптический кабель (optical fiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наи­более качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радио­каналов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция (Frequency Modulation, FM), а также диапазонах сверхвысо­ких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты использу­ют либо спутниковые каналы, либо радиорелейные каналы, где это условие выпол­няется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются воло­конно-оптические. На них сегодня строятся как магистрали крупных территори­альных сетей, так и высокоскоростные линии связи локальных сетей. Популярной средой является также витая пара, которая характеризуется отличным соотноше­нием качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя — например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользова­телем сети, таким как шофер грузовика, врач, совершающий обход, и т. п.

2.1.2. Аппаратура линий связи

Аппаратура передачи данных (АПД или DCE — Data Circuit terminating Equipment) непосредственно связывает компьютеры или локальные сети пользователя с лини­ей связи и является, таким образом, пограничным оборудованием. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, оптические модемы, уст­ройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физи­ческую среду.

Аппаратура пользователя линии связи, вырабатывающая данные для передачи по линии связи и подключаемая непосредственно к аппаратуре передачи данных, обобщенно носит название оконечное оборудование данных (ООД или DTE — Data Terminal Equipment). Примером DTE могут служить компьютеры или маршрутиза­торы локальных сетей. Эту аппаратуру не включают в состав линии связи.

Разделение оборудования на классы DCE и DTE в локальных сетях является достаточно условным. Например, адаптер локальной сети можно считать как при­надлежностью компьютера, то есть DTE, так и составной частью канала связи, то есть DCE.

Промежуточная аппаратура обычно используется на линиях связи большой про­тяженности. Промежуточная аппаратура решает две основные задачи:

б улучшение качества сигнала;

в создание постоянного составного канала связи между двумя абонентами сети.

В локальных сетях промежуточная аппаратура может совсем не использовать­ся, если протяженность физической среды — кабелей или радиоэфира — позволяет одному сетевому адаптеру принимать сигналы непосредственно от другого сетево­го адаптера, без промежуточного усиления. В противном случае применяются уст­ройства типа повторителей и концентраторов.

В глобальных сетях необходимо обеспечить качественную передачу сигналов на расстояния в сотни и тысячи километров. Поэтому без усилителей сигналов, уста­новленных через определенные расстояния, построить территориальную линию связи невозможно. В глобальной сети необходима также и промежуточная аппара­тура другого рода — мультиплексоры, демультиплексоры и коммутаторы. Эта ап­паратура решает вторую указанную задачу, то есть создает между двумя абонентами сети составной канал из некоммутируемых отрезков физической среды — кабелей с усилителями. Важно отметить, что приведенные на рис. 2.1 мультиплексоры, де­мультиплексоры и коммутаторы образуют составной канал на долговременной ос­нове, например на месяц или год, причем абонент не может влиять на процесс коммутации этого канала — эти устройства управляются по отдельным входам, абоненту недоступным (на рисунке не показаны). Наличие промежуточной ком­мутационной аппаратуры избавляет создателей глобальной сети от необходимости прокладывать отдельную кабельную линию для каждой пары соединяемых узлов сети. Вместо этого между мультиплексорами и коммутаторами используется высо­коскоростная физическая среда, например волоконно-оптический или коаксиальный' кабель, по которому передаются одновременно данные от большого числа сравни­тельно низкоскоростных абонентских линий. А когда нужно образовать постоян­ное соединение между какими-либо двумя конечными узлами сети, находящимися,

например, в разных городах, то мультиплексоры, коммутаторы и демультиплексоры настраиваются оператором канала соответствующим образом. Высокоскоростной канал обычно называют уплотненным каналом. I

Промежуточная аппаратура канала связи прозрачна для пользователя, он ее не замечает и не учитывает в своей работе. Для него важны только качество получен- ного канала, влияющее на скорость передачи дискретных данных. В действитель-

ности же промежуточная аппаратура образует сложную сеть, которую называют первичной сетью, так как сама по себе она никаких высокоуровневых служб (например, файловой или передачи голоса) не поддерживает, а только служит осно­вой для построения компьютерных, телефонных или иных сетей.

В зависимости от типа промежуточной аппаратуры все линии связи делятся на, аналоговые и цифровые. В аналоговых линиях промежуточная аппаратура предна- значена для усиления аналоговых сигналов, то есть сигналов, которые имеют непрерывный диапазон значений. Такие линии связи традиционно применялись в телефонных сетях для связи АТС между собой. Для создания высокоскоростных

каналов, которые мультиплексируют несколько низкоскоростных аналоговых абонентских каналов, при аналоговом подходе обычно используется техника частотного мультиплексирования (Frequency Division Multiplexing, FDM).

В цифровых линиях связи передаваемые сигналы имеют конечное число состоя­ний. Как правило, элементарный сигнал, то есть сигнал, передаваемый за один такт

работы передающей аппаратуры, имеет 2 или 3 состояния, которые передаются в линиях связи импульсами прямоугольной формы. С помощью таких сигналов пе­редаются как компьютерные данные, так и оцифрованные речь и изображение. В цифровых каналах связи используется промежуточная аппаратура, которая улуч­шает форму импульсов и обеспечивает их ресинхронизацию, то есть восстанавливает период их следования. Промежуточная аппаратура образования высокоскорост­ных цифровых каналов (мультиплексоры, демультиплексоры, коммутаторы) рабо­тает по принципу временного мультиплексирования каналов (Time Division Multiplexing, TDM), когда каждому низкоскоростному каналу выделяется опреде­ленная доля времени (тайм-слот или квант) высокоскоростного канала.

Аппаратура передачи дискретных компьютерных данных по аналоговым и циф­ровым линиям связи существенно отличается, так как в первом случае линия свя­зи предназначена для передачи сигналов произвольной формы и не предъявляет никаких требований к способу представления единиц и нулей аппаратурой переда­чи данных, а во втором — все параметры передаваемых линией импульсов стандар­тизованы. Другими словами, на цифровых линиях связи протокол физического уровня определен, а на аналоговых линиях — нет.

2.1.3. Характеристики линий связи

Типы характеристик и способы их определения

К основным характеристикам линий связи относятся:

• амплитудно-частотная характеристика;

• полоса пропускания;

• затухание;

• помехоустойчивость;

• перекрестные наводки на ближнем конце линии;

• пропускная способность;

• достоверность передачи данных;

• удельная стоимость.

В первую очередь разработчика вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети. Пропускная спо­собность и достоверность — это характеристики как линии связи, так и способа передачи данных. Поэтому если способ передачи (протокол) уже определен, то известны и эти характеристики. Например, пропускная способность цифровой линии всегда известна, так как на ней определен протокол физического уровня, который задает битовую скорость передачи данных — 64 Кбит/с, 2 Мбит/с и т. п.

Однако нельзя говорить о пропускной способности линии связи, до того как для нее определен протокол физического уровня. Именно в таких случаях, когда только предстоит определить, какой из множества существующих протоколовможноиспользовать на данной линии, очень важными являются остальные характеристи­ки линии, такие как полоса пропускания, перекрестные наводки, помехоустойчи­вость и другие характеристики.

Для определения характеристик линии связи часто используют анализ ее реак­ций на некоторые эталонные воздействия. Такой подход позволяет достаточно про­сто и однотипно определять характеристики линий связи любой природы, не прибегая к сложным теоретическим исследованиям. Чаще всего в качестве эталон­ных сигналов для исследования реакций линий связи используются синусоидаль­ные сигналы различных частот. Это связано с тем, что сигналы этого типа часто встречаются в технике и с их помощью можно представить любую функцию вре­мени — как непрерывный процесс колебаний звука, так и прямоугольные импуль­сы, генерируемые компьютером.

Спектральный анализ сигналов на линиях связи

Из теории гармонического анализа известно, что любой периодический процесс можно представить в виде суммы синусоидальных колебаний различных частот и различных амплитуд (рис. 2.3). Каждая составляющая синусоида называется так­же гармоникой, а набор всех гармоник называют спектральным разложением ис­ходного сигнала. Непериодические сигналы можно представить в виде интеграла синусоидальных сигналов с непрерывным спектром частот. Например, спектраль­ное разложение идеального импульса (единичной мощности и нулевой длительно­сти) имеет составляющие всего спектра частот, от -¥ до +¥ (рис. 2.4).



Рис.2.3. Представление периодического сигнала суммой синусоид

Рис.2.4. Спектральное разложение идеального импульса

Техника нахождения спектра любого исходного сигнала хорошо известна. Для некоторых сигналов, которые хорошо описываются аналитически (например, для последовательности прямоугольных импульсов одинаковой длительности и амп­литуды), спектр легко вычисляется на основании формул Фурье. Для сигналов произвольной формы, встречающихся на практике, спектр можно найти с помо­щью специальных приборов — спектральных анализаторов, которые измеряют спектр реального сигнала и отображают амплитуды составляющих гармоник на экране или распечатывают их на принтере.

Искажение передающим каналом синусоиды какой-либо частоты приводит в конечном счете к искажению передаваемого сигнала любой формы, особенно если синусоиды различных частот искажаются неодинаково. Если это аналоговый сиг­нал, передающий речь, то изменяется тембр голоса за счет искажения обертонов — боковых частот. При передаче импульсных сигналов, характерных для компьютер­ных сетей, искажаются низкочастотные и высокочастотные гармоники, в результа­те фронты импульсов теряют свою прямоугольную форму (рис. 2.5). Вследствие этого на приемном конце линии сигналы могут плохо распознаваться.


Рис.2.5. Искажение импульсов в линии связи

Линия связи искажает передаваемые сигналы из-за того, что ее физические параметры отличаются от идеальных. Так, например, медные провода всегда пред­ставляют собой некоторую распределенную по длине комбинацию активного со­противления, емкостной и индуктивной нагрузки (рис. 2.6). В результате для синусоид различных частот линия будет обладать различным полным сопротивлением, а зна­чит, и передаваться они будут по-разному. Волоконно-оптический кабель также име­ет отклонения, мешающие идеальному распространению света. Если линия связи включает промежуточную аппаратуру, то она также может вносить дополнительные искажения, так как невозможно создать устройства, которые бы одинаково хорошо передавали весь спектр синусоид, от нуля до бесконечности.


Рис. 2.6. Представление линии как распределенной индуктивно-емкостной нагрузки

Кроме искажений сигналов, вносимых внутренними физическими параметрами линии связи, существуют и внешние помехи, которые вносят свой вклад в искаже­ние формы сигналов на выходе линии. Эти помехи создают различные электричес­кие двигатели, электронные устройства, атмосферные явления и т. д. Несмотря на защитные меры, предпринимаемые разработчиками кабелей и усилительно-ком­мутирующей аппаратуры, полностью компенсировать влияние внешних помех не удается. Поэтому сигналы на выходе линии связи обычно имеют сложную форму (как это и показано на рис. 2.5), по которой иногда трудно понять, какая дискрет­ная информация была подана на вход линии.



Поделиться:


Последнее изменение этой страницы: 2016-06-29; просмотров: 324; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.110.145 (0.012 с.)