Амплитудно-частотная характеристика, полоса пропускания и затухание 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Амплитудно-частотная характеристика, полоса пропускания и затухание



Степень искажения синусоидальных сигналов линиями связи оценивается с помо­щью таких характеристик, как амплитудно-частотная характеристика, полоса про­пускания и затухание на определенной частоте.


Амплитудно-частотная характеристика (рис. 2.7) показывает, как затухает ам­плитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой характеристике часто используют также такой параметр сигнала, как его мощность.

Рис. 2.7. Амплитудно-частотная характеристика

Знание амплитудно-частотной характеристики реальной линии позволяет оп­ределить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду со­ставляющих его гармоник в соответствии с амплитудно-частотной характеристи­кой, а затем найти форму выходного сигнала, сложив преобразованные гармоники.

Несмотря на полноту информации, предоставляемой амплитудно-частотной ха­рактеристикой о линии связи, ее использование осложняется тем обстоятельством, что получить ее весьма трудно. Ведь для этого нужно провести тестирование ли­нии эталонными синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. При­чем менять частоту входных синусоид нужно с небольшим шагом, а значит, коли­чество экспериментов должно быть очень большим. Поэтому на практике вместо амплитудно-частотной характеристики применяются другие, упрощенные харак­теристики — полоса пропускания и затухание.

Полоса пропускания (bandwidth) — это непрерывный диапазон частот, для кото­рого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5. То есть полоса пропускания определяет диа­пазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Знание полосы пропускания позволяет получить с некоторой степенью приближения тот же результат, что и знание амп­литудно-частотной характеристики. Как мы увидим ниже, ширина полосы пропус­кания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи. Именно этот факт нашел отражение в английском эквиваленте рассматриваемого термина (width — ширина).

Затухание (attenuation) определяется как относительное уменьшение ампли­туды или мощности сигнала при передаче по линии сигнала определенной частоты. Таким образом, затухание представляет собой одну точку из амплитудно-частот­ной характеристики линии. Часто при эксплуатации линии заранее известна ос­новная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по ли­нии сигналов. Более точные оценки возможны при знании затухания на несколь­ких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание А обычно измеряется в децибелах (дБ, decibel — dB) и вычисляется по следующей формуле:

А = 10 logio Рвых/Рвх,

где Рвых — мощность сигнала на выходе линии, Рдх — мощность сигнала на входе линии.

Так как мощность выходного сигнала кабеля без промежуточных усилителей всегда меньше, чем мощность входного сигнала, затухание кабеля всегда является отрицательной величиной.

Например, кабель на витой паре категории 5 характеризуется затуханием не ниже -23,6 дБ для частоты 100 МГц при длине кабеля 100 м. Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, сигналы которых имеют значимые гармоники с частотой примерно 100 МГц. Кабель категории 3 предназначен для низкоскоростной передачи данных, поэтому для него определяется затухание на частоте 10 МГц (не ниже -11,5 дБ). Часто опе­рируют с абсолютными значениями затухания, без указания знака.

Абсолютный уровень мощности, например уровень мощности передатчика, так­же измеряется в децибелах. При этом в качестве базового значения мощности сигнала, относительно которого измеряется текущая мощность, принимается зна­чение в 1 мВт. Таким образом, уровень мощности р вычисляется по следующей формуле:

р = 10 log10 Р/1мВт [дБм],

где Р — мощность сигнала в милливаттах, а дБм (dBm) — это единица измерения Уровня мощности (децибел на 1 мВт).

Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.

Полоса пропускания зависит от типа линии и ее протяженности. На рис. 2.8 по­казаны полосы пропускания линий связи различных типов, а также наиболее часто используемые в технике связи частотные диапазоны.


Рис. 2.8. Полосы пропускания линий связи и популярные частотные диапазоны

Пропускная способность линии

Пропускная способность (throughput) линии характеризует максимально возмож­ную скорость передачи данных по линии связи. Пропускная способность измеря­ется в битах в секунду — бит/с, а также в производных единицах, таких как килобит в секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д.

ПРИМЕЧАНИЕ Пропускная способность линий связи и коммуникационного сетевого оборудования традиционно изме­ряется в битах в секунду, а не в байтах в секунду. Это связано с тем, что данные в сетях передаются последовательно, то есть побитно, а не параллельно, байтами, как это происходит между устройствами внут­ри компьютера. Такие единицы измерения, как килобит, мегабит или гигабит, в сетевых технологиях строго соответствуют степеням 10 (то есть килобит - это 1000 бит, а мегабит - это 1 000 000 бит), как это принято во всех отраслях науки и техники, а не близким к этим числам степеням 2, как это принято в программировании, где приставка «кило» равна 2'° =1024, а «мего» =1 048 576.

Пропускная способность линии связи зависит не только от ее характеристик, таких как амплитудно-частотная характеристика, но и от спектра передаваемых сигналов. Если значимые гармоники сигнала (то есть те гармоники, амплитуды которых вносят основной вклад в результирующий сигнал) попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться данной линией связи и приемник сможет правильно распознать информацию, отправленную по линии передатчиком (рис. 2.9, а). Если же значимые гармоники выходят за грани­цы полосы пропускания линии связи, то сигнал будет значительно искажаться, приемник будет ошибаться при распознавании информации, а значит, информа­ция не сможет передаваться с заданной
пропускной способностью (рис. 2.9, 6).

Рис. 2.9. Соответствие между полосой пропускания линии связи и спектром сигнала

Выбор способа представления дискретной информации в виде сигналов, пода­ваемых на линию связи, называется физическим или линейным кодированием. От выбранного способа кодирования зависит спектр сигналов и, соответственно, пропускная способность линии. Таким образом, для одного способа кодирования линия может обладать одной пропускной способностью, а для другого — другой. Например, витая пара категории 3 может передавать данные с пропускной способ­ностью 10 Мбит/с при способе кодирования стандарта физического уровня lOBase-T и 33 Мбит/с при способе кодирования стандарта 100Base-T4. В примере, приве­денном на рис. 2.9, принят следующий способ кодирования — логическая 1 пред­ставлена на линии положительным потенциалом, а логический 0 — отрицательным.

Теория информации говорит, что любое различимое и непредсказуемое измене­ние принимаемого сигнала несет в себе информацию. В соответствии с этим прием синусоиды, у которой амплитуда, фаза и частота остаются неизменными, инфор­мации не несет, так как изменение сигнала хотя и происходит, но является хорошо предсказуемым. Аналогично, не несут в себе информации импульсы на тактовой шине компьютера, так как их изменения также постоянны во времени. А вот им­пульсы на шине данных предсказать заранее нельзя, поэтому они переносят ин­формацию между отдельными блоками или устройствами.

Большинство способов кодирования используют изменение какого-либо пара­метра периодического сигнала — частоты, амплитуды и фазы синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, парамет­ры которого изменяются, называют несущим сигналом или несущей частотой, если в качестве такого сигнала используется синусоида.

Если сигнал изменяется так, что можно различить только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации — биту. Если же сигнал может иметь более двух различимых состояний, то любое его изменение будет нести несколько бит информации.

Количество изменений информационного параметра несущего периодического сигнала в секунду измеряется в водах (baud). Период времени между соседними изменениями информационного сигнала называется тактом работы передатчика.

Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования.

Если сигнал имеет более двух различимых состояний, то пропускная способность в битах в секунду будет выше, чем число бод. Например, если информационными параметрами являются фаза и амплитуда синусоиды, причем различаются 4 состоя­ния фазы в 0,90,180 и 270 градусов и два значения амплитуды сигнала, то инфор­мационный сигнал может иметь 8 различимых состояний. В этом случае модем, работающий со скоростью 2400 бод (с тактовой частотой 2400 Гц) передает инфор­мацию со скоростью 7200 бит/с, так как при одном изменении сигнала передается 3 бита информации.

При использовании сигналов с двумя различимыми состояниями может наблю­даться обратная картина. Это часто происходит потому, что для надежного распозна­вания приемником пользовательской информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бита импульсом поло-. жительной полярности, а нулевого значения бита — импульсом отрицательной поляр­ности физический сигнал дважды изменяет свое состояние при передаче каждого бита. При таком кодировании пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии.

На пропускную способность линии оказывает влияние не только физическое, но и логическое кодирование. Логическое кодирование выполняется до физического кодирования и подразумевает замену бит исходной информации новой последова­тельностью бит, несущей ту же информацию, но обладающей, кроме этого, до­полнительными свойствами, например возможностью для приемной стороны обнаруживать ошибки в принятых данных. Сопровождение каждого байта исход­ной информации одним битом четности — это пример очень часто применяемого способа логического кодирования при передаче данных с помощью модемов. Дру­гим примером логического кодирования может служить шифрация данных, обес­печивающая их конфиденциальность при передаче через общественные каналы связи. При логическом кодировании чаще всего исходная последовательность бит заме­няется более длинной последовательностью, поэтому пропускная способность ка­нала по отношению к полезной информации при этом уменьшается.

Связь между пропускной способностью линии и ее полосой пропускания

Чем выше частота несущего периодического сигнала, тем больше информации в единицу времени передается по линии и тем выше пропускная способность линии при фиксированном способе физического кодирования. Однако, с другой стороны, с увеличением частоты периодического несущего сигнала увеличивается и ширина спектра этого сигнала, то есть разность между максимальной и минимальной час­тотами того набора синусоид, которые в сумме дадут выбранную для физического кодирования последовательность сигналов. Линия передает этот спектр синусоид с теми искажениями, которые определяются ее полосой пропускания. Чем больше несоответствие между полосой пропускания линии и шириной спектра передавае­мых информационных сигналов, тем больше сигналы искажаются и тем вероятнее ошибки в распознавании информации принимающей стороной, а значит, скорость передачи информации на самом деле оказывается меньше, чем можно было пред­положить.

Связь между полосой пропускания линии и ее максимально возможной пропуск­ной способностью, вне зависимости от принятого способа физического кодирования, установил Клод Шеннон:

С - F log2 (1 + Рс/Рщ),

где С — максимальная пропускная способность линии в битах в секунду, F — ширина полосы пропускания линии в герцах, Рс — мощность сигнала, Рщ — мощность шума.

Из этого соотношения видно, что хотя теоретического предела пропускной спо­собности линии с фиксированной полосой пропускания не существует, на практи­ке такой предел имеется. Действительно, повысить пропускную способность линии можно за счет увеличения мощности передатчика или же уменьшения мощности шума (помех) на линии связи. Обе эти составляющие поддаются изменению с большим трудом. Повышение мощности передатчика ведет к значительному уве­личению его габаритов и стоимости. Снижение уровня шума требует применения специальных кабелей с хорошими защитными экранами, что весьма дорого, а так­же снижения шума в передатчике и промежуточной аппаратуре, чего достичь весьма не просто. К тому же влияние мощностей полезного сигнала и шума на пропуск­ную способность ограничено логарифмической зависимостью, которая растет да­леко не так быстро, как прямо-пропорциональная. Так, при достаточно типичном исходном отношении мощности сигнала к мощности шума в 100 раз повышение мощности передатчика в 2 раза даст только 15 % увеличения пропускной способ­ности линии.

Близким по сути к формуле Шеннона является следующее соотношение, полу­ченное Найквистом, которое также определяет максимально возможную пропуск­ную способность линии связи, но без учета шума на линии:

С = 2F log2 М,

где М — количество различимых состояний информационного параметра.

Если сигнал имеет 2 различимых состояния, то пропускная способность равна удвоенному значению ширины полосы пропускания линии связи (рис. 2.10, а). Если же передатчик использует более чем 2 устойчивых состояния сигнала для кодирования данных, то пропускная способность линии повышается, так как за один такт работы передатчик передает несколько бит исходных данных, например 2 бита при наличии четырех различимых состояний сигнала (рис. 2.10, б).

 


Рис. 2.10. Повышение скорости передачи за счет дополнительных состояний сигнала

Хотя формула Найквиста явно не учитывает наличие шума, косвенно его влия­ние отражается в выборе количества состояний информационного сигнала. Для повышения пропускной способности канала хотелось бы увеличить это количество до значительных величин, но на практике мы не можем этого сделать из-за шума на линии. Например, для примера, приведенного на рис. 2.10, можно увеличить пропускную способность линии еще в два раза, использовав для кодирования дан­ных не 4, а 16 уровней. Однако если амплитуда шума часто превышает разницу между соседними 16-ю уровнями, то приемник не сможет устойчиво распознавать передаваемые данные. Поэтому количество возможных состояний сигнала фактичес­ки ограничивается соотношением мощности сигнала и шума, а формула Найквиста определяет предельную скорость передачи данных в том случае, когда количество, состояний уже выбрано с учетом возможностей устойчивого распознавания прием­ником.

Приведенные соотношения дают предельное значение пропускной способности 1 линии, а степень приближения к этому пределу зависит от конкретных методов, физического кодирования, рассматриваемых ниже.

Помехоустойчивость и достоверность

Помехоустойчивость линии определяет ее способность уменьшать уровень помех, у создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость Ч линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной — волоконно-оптические линии, малочувствительные ко внешнему электромагнитному излучению. Обычно для уменьшения помех, появляющихся из-за внешних электромагнитных полей, проводники экранируют и/или скручивают. Перекрестные наводки на ближнем конце (Near End Cross Talk — NEXT) опреде-

ляют помехоустойчивость кабеля к внутренним источникам помех, когда электромаг­нитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полез­ный сигнал. Показатель NEXT, выраженный в децибелах, равен 10 log Рвых/Рнав, где Рвых — мощность выходного сигнала, Рнав — мощность наведенного сигнала.

 

Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары катего­рии 5 показатель NEXT должен быть меньше -27 дБ на частоте 100 МГц.

Показатель NEXT обычно используется применительно к кабелю, состоящему из нескольких витых пар, так как в этом случае взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (то есть состоящего из одной экранированной жилы) этот показатель не имеет смысла, а для двойного коаксиального кабеля он также не применяется вслед­ствие высокой степени защищенности каждой жилы. Оптические волокна также не создают сколь-нибудь заметных помех друг для друга.

В связи с тем, что в некоторых новых технологиях используется передача дан­ных одновременно по нескольким витым парам, в последнее время стал приме­няться показатель PowerSUM, являющийся модификацией показателя NEXT. Этот показатель отражает суммарную мощность перекрестных наводок от всех передаю­щих пар в кабеле.

Достоверность передачи данных характеризует вероятность искажения для каж­дого передаваемого бита данных. Иногда этот же показатель называют интенсивно­стью битовых ошибок (Bit Error Rate, BER). Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило, Ю^-Ю"6, в оптоволоконных линиях связи — 10~9. Значение достоверности передачи данных, например, в 10"4 говорит о том, что в среднем из 10 000 бит искажается значение одного бита.

Искажения бит происходят как из-за наличия помех на линии, так и по причи­не искажений формы сигнала ограниченной полосой пропускания линии. Поэто­му для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать более широкополосные линии связи.

2.1.4. Стандарты кабелей

Кабель — это достаточно сложное изделие, состоящее из проводников, слоев экрана и изоляции. В некоторых случаях в состав кабеля входят разъемы, с помощью которых кабели присоединяются к оборудованию. Кроме этого, для обеспечения быстрой перекоммутации кабелей и оборудования используются различные элек­тромеханические устройства, называемые кроссовыми секциями, кроссовыми ко­робками или шкафами.

В компьютерных сетях применяются кабели, удовлетворяющие определенным стандартам, что позволяет строить кабельную систему сети из кабелей и соедини­тельных устройств разных производителей. Сегодня наиболее употребительными стандартами в мировой практике являются следующие.

• Американский стандарт EIA/TIA-568A, который был разработан совместными усилиями нескольких организаций: ANSI, EIA/TIA и лабораторией Underwriters Labs (UL). Стандарт EIA/TIA-568 разработан на основе предыдущей версии стандарта EIA/TIA-568 и дополнений к этому стандарту TSB-36 и TSB-40A).,

• Международный стандарт ISO/IEC 11801.

• Европейский стандарт EN50173.

Эти стандарты близки между собой и по многим позициям предъявляют к ка­белям идентичные требования. Однако есть и различия между этими стандартами, например, в международный стандарт 11801 и европейский EN50173 вошли неко­торые типы кабелей, которые отсутствуют в стандарте EIA/TAI-568A.

До появления стандарта EIA/TIA большую роль играл американский стандарт системы категорий кабелей Underwriters Labs, разработанный совместно с компа­нией Anixter. Позже этот стандарт вошел в стандарт EIA/TIA-568.

Кроме этих открытых стандартов, многие компании в свое время разработали свои фирменные стандарты, из которых до сих пор имеет практическое значение только один — стандарт компании IBM.

При стандартизации кабелей принят протокольно-независимый подход. Это означа­ет, что в стандарте оговариваются электрические, оптические и механические характери­стики, которым должен удовлетворять тот или иной тип кабеля или соединительного изделия — разъема, кроссовой коробки и т. п. Однако для какого протокола предназна­чен данный кабель, стандарт не оговаривает. Поэтому нельзя приобрести кабель для протокола Ethernet или FDDI, нужно просто знать, какие типы стандартных кабелей поддерживают протоколы Ethernet и FDDI.

В ранних версиях стандартов определялись только характеристики кабелей, без со­единителей. В последних версиях стандартов появились требования к соединительным элементам (документы TSB-36 и TSB-40A, вошедшие затем в стандарт 568А), а также к линиям (каналам), представляющим типовую сборку элементов кабельной системы, состоящую из шнура от рабочей станции до розетки, самой розетки, основного кабеля (длиной до 90 м для витой пары), точки перехода (например, еще одной розетки или жесткого кроссового соединения) и шнура до активного оборудования, например кон­центратора или коммутатора.

Мы остановимся только на основных требованиях к самим кабелям, не рассматривая характеристик соединительных элементов и собранных линий.

В стандартах кабелей оговаривается достаточно много характеристик, из кото­рых наиболее важные перечислены ниже (первые две из них уже были достаточно детально рассмотрены).

Затухание (Attenuation). Затухание измеряется в децибелах на метр для опре­деленной частоты или диапазона частот сигнала.

Перекрестные наводки на ближнем конце (Near End Cross Talk, NEXT). Измеря­ются в децибелах для определенной частоты сигнала.

Импеданс (волновое сопротивление) — это полное (активное и реактивное) со-> противление в электрической цепи. Импеданс измеряется в Омах и является относительно постоянной величиной для кабельных систем (например, для ко­аксиальных кабелей, используемых в стандартах Ethernet, импеданс кабеля дол­жен составлять 50 Ом). Для неэкранированной витой пары наиболее часто используемые значения импеданса — 100 и 120 Ом. В области высоких частот (100-200 МГц) импеданс зависит от частоты.

в Активное сопротивление — это сопротивление постоянному току в электричес­кой цепи. В отличие от импеданса активное сопротивление не зависит от часто­ты и возрастает с увеличением длины кабеля.

Емкость — это свойство металлических проводников накапливать энергию. Два электрических проводника в кабеле, разделенные диэлектриком, представляют собой конденсатор, способный накапливать заряд. Емкость является нежелательной величиной, поэтому следует стремиться к тому, чтобы она была как можно меньше (иногда применяют термин «паразитная емкость»). Высокое значение емкости в кабеле приводит к искажению сигнала и ограничивает полосу пропус­кания линии.

Уровень внешнего электромагнитного излучения или электрический шум. Элект­рический шум — это нежелательное переменное напряжение в проводнике. Элект­рический шум бывает двух типов: фоновый и импульсный. Электрический шум можно также разделить на низко-, средне- и высокочастотный. Источниками фоно­вого электрического шума в диапазоне до 150 кГц являются линии электропере­дачи, телефоны и лампы дневного света; в диапазоне от 150 кГц до 20 МГц — компьютеры, принтеры, ксероксы; в диапазоне от 20 МГц до 1 ГГц — телеви­зионные и радиопередатчики, микроволновые печи. Основными источниками импуль-сного электрического шума являются моторы, переключатели и сва­рочные агрегаты. Электрический шум измеряется в милливольтах.

Диаметр или площадь сечения проводника. Для медных проводников достаточно употребительной является американская система AWG (American Wire Gauge), которая вводит некоторые условные типы проводников, например 22 AWG, 24 AWG, 26 AWG. Чем больше номер типа проводника, тем меньше его диаметр. В вычислительных сетях наиболее употребительными являются типы провод­ников, приведенные выше в качестве примеров. В европейских и международ­ных стандартах диаметр проводника указывается в миллиметрах. Естественно, приведенный перечень характеристик далеко не полон, причем в нем представлены только электромагнитные характеристики и его нужно допол­нить механическими и конструктивными характеристиками, определяющими тип изоляции, конструкцию разъема и т. п. Помимо универсальных характеристик, таких, например, как затухание, которые применимы для всех типов кабелей, су­ществуют характеристики, которые применимы только к определенному типу кабеля. Например, параметр шаг скрутки проводов используется только для характеристи­ки витой пары, а параметр NEXT применим только к многопарным кабелям на основе витой пары.

Основное внимание в современных стандартах уделяется кабелям на основе витой пары и волоконно-оптическим кабелям.

Кабели на основе неэкранированной витой пары

Медный неэкранированный кабель UTP в зависимости от электрических и меха­нических характеристик разделяется на 5 категорий (Category 1 — Category 5). Кабели категорий 1 и 2 были определены в стандарте EIA/TIA-568, но в стандарт 568А уже не вошли, как устаревшие.

Кабели категории 1 применяются там, где требования к скорости передачи ми­нимальны. Обычно это кабель для цифровой и аналоговой передачи голоса и низ­коскоростной (до 20 Кбит/с) передачи данных. До 1983 года это был основной тип кабеля для телефонной разводки.

Кабели категории 2 были впервые применены фирмой IBM при построении собственной кабельной системы. Главное требование к кабелям этой категории — способность передавать сигналы со спектром до 1 МГц.

Кабели категории 3 были стандартизованы в 1991 году, когда был разработан Стандарт телекоммуникационных кабельных систем для коммерческих зданий (EIA-568), на основе которого затем был создан действующий стандарт EIA-568A. Стандарт EIA-568 определил электрические характеристики кабелей категории 3 для частот в диапазоне до 16 МГц, поддерживающих, таким образом, высокоско­ростные сетевые приложения. Кабель категории 3 предназначен как для передачи данных, так и для передачи голоса. Шаг скрутки проводов равен примерно 3 витка на 1 фут (30,5 см). Кабели категории 3 сейчас составляют основу многих кабель­ных систем зданий, в которых они используются для передачи и голоса, и данных.

Кабели категории 4 представляют собой несколько улучшенный вариант кабе­лей категории 3. Кабели категории 4 обязаны выдерживать тесты на частоте пере­дачи сигнала 20 МГц и обеспечивать повышенную помехоустойчивость и низкие потери сигнала. Кабели категории 4 хорошо подходят для применения в системах с увеличенными расстояниями (до 135 метров) и в сетях Token Ring с пропускной способностью 16 Мбит/с. На практике используются редко.

Кабели категории 5 были специально разработаны для поддержки высоко­скоростных протоколов. Поэтому их характеристики определяются в диапазоне до 100 МГц. Большинство новых высокоскоростных стандартов ориентируются на ис­пользование витой пары 5 категории. На этом кабеле работают протоколы со скоро­стью передачи данных 100 Мбит/с — FDDI (с физическим стандартом TP-PMD), 1 Fast Ethernet, lOOVG-AnyLAN, а также более скоростные протоколы — АТМ на ско­рости 155 Мбит/с, и Gigabit Ethernet на скорости 1000 Мбит/с (вариант Gigabit, Ethernet на витой паре категории 5 стал стандартом в июне 1999 г.). Кабель катего­рии 5 пришел на замену кабелю категории 3, и сегодня все новые кабельные системы крупных зданий строятся именно на этом типе кабеля (в сочетании с волоконнооптическим).

Наиболее важные электромагнитные характеристики кабеля категории 5 имеют следующие значения:

о полное волновое сопротивление в диапазоне частот до 100 МГц равно 100 Ом (стандарт ISO 11801 допускает также кабель с волновым сопротивлением 120 Ом);

о величина перекрестных наводок NEXT в зависимости от частоты сигнала должна принимать значения не менее 74 дБ на частоте 150 кГц и не менее 32 дБ на частоте 100 МГц;

в затухание имеет предельные значения от 0,8 дБ (на частоте 64 кГц) до 22 дБ (г частоте 100 МГц);

в активное сопротивление не должно превышать 9,4Ом на 100 м;

в емкость кабеля не должна превышать 5,6 нф на 100 м.

Все кабели UTP независимо от их категории выпускаются в 4-парном исполнении. Каждая из четырех пар кабеля имеет определенный цвет и шаг скрутки. обычнй; две пары предназначены для передачи данных, а две — для передачи голоса.

Для соединения кабелей с оборудованием используются вилки и розетки RJ-45, представляющие 8-контактные разъемы, похожие на обычные телефонные разъемы Mbi.RJ-11.

Особое место занимают кабели категорий 6 и 7, которые промышленность начала выпускать сравнительно недавно. Для кабеля категории 6 характеристики опре­деляются до частоты 200 МГц, а для кабелей категории 7 — до 600 МГц. Кабели категории 7 обязательно экранируются, причем как каждая пара, так и весь кабель в целом. Кабель категории 6 может быть как экранированным, так и неэкраниро­ванным. Основное назначение этих кабелей — поддержка высокоскоростных про­токолов на отрезках кабеля большей длины, чем кабель UTP категории 5. Некото­рые специалисты сомневаются в необходимости применения кабелей категории 7, так как стоимость кабельной системы при их использовании получается соизмери­мой по стоимости сети с использованием волоконно-оптических кабелей, а харак­теристики кабелей на основе оптических волокон выше.

Кабели на основе экранированной витой пары

Экранированная витая пара STP хорошо защищает передаваемые сигналы от внеш­них помех, а также меньше излучает электромагнитных колебаний вовне, что за­щищает, в свою очередь, пользователей сетей от вредного для здоровья излучения. Наличие заземляемого экрана удорожает кабель и усложняет его прокладку, так как требует выполнения качественного заземления. Экранированный кабель при­меняется только для передачи данных, а голос по нему не передают.

Основным стандартом, определяющим параметры экранированной витой пары, является фирменный стандарт IBM. В этом стандарте кабели делятся не на катего­рии, а на типы: Type I, Type 2,..., Type 9.

Основным типом экранированного кабеля является кабель Type 1 стандарта IBM. Он состоит из 2-х пар скрученных проводов, экранированных проводящей оплеткой, которая заземляется. Электрические параметры кабеля Type 1 примерно соответствуют параметрам кабеля UTP категории 5. Однако волновое сопротивление кабеля Type 1 равно 150 Ом (UTP категории 5 имеет волновое сопротивление 100 Ом), поэтому простое «улучшение» кабельной проводки сети путем замены неэкрани­рованной пары UTP на STP Type 1 невозможно. Трансиверы, рассчитанные на работу с кабелем, имеющим волновое сопротивление 100 Ом, будут плохо рабо­тать на волновое сопротивление 150 Ом. Поэтому при использовании STP Type 1 необходимы соответствующие трансиверы. Такие трансиверы имеются в сетевых адаптерах Token Ring, так как эти сети разрабатывались для работы на экраниро­ванной витой паре. Некоторые другие стандарты также поддерживают кабель STP Type 1 - например, lOOVG-AnyLAN, а также Fast Ethernet (хотя основным типом кабеля для Fast Ethernet является UTP категории 5). В случае если технология может использовать UTP и STP, нужно убедиться, на какой тип кабеля рассчита­ны приобретаемые трансиверы. Сегодня кабель STP Type 1 включен в стандарты EIA/TIA-568A, ISO 11801 и EN50173, то есть приобрел международный статус.

Экранированные витые пары используются также в кабеле IBM Type 2, кото­рый представляет кабель Type 1 с добавленными 2 парами неэкранированного про­вода для передачи голоса.

Для присоединения экранированных кабелей к оборудованию, используются разъемы конструкции IBM.

Не все типы кабелей стандарта IBM относятся к экранированным кабелям — некоторые определяют характеристики неэкранированного телефонного кабеля (Type 3) и оптоволоконного кабеля (Type 5).

Коаксиальные кабели

Существует большое количество типов коаксиальных кабелей, используемых в се­тях различного типа — телефонных, телевизионных и компьютерных. Ниже приво­дятся основные типы и характеристики этих кабелей.

RG-8 и RG-11 — «толстый» коаксиальный кабель, разработанный для сетей Ethernet lOBase-5. Имеет волновое сопротивление 50Ом и внешний диаметр 0,5 дюйма (около 12 мм). Этот кабель имеет достаточно толстый внутренний проводник диаметром 2,17 мм, который обеспечивает хорошие механические и электрические характеристики (затухание на частоте 10 МГц — не хуже 18 дБ/км). Зато этот кабель сложно монтировать — он плохо гнется.

RG-58/U, RG-58 A/U и RG-58 C/U — разновидности «тонкого» коаксиального кабеля для сетей Ethernet lOBase-2. Кабель RG-58/U имеет сплошной внутрен­ний проводник, а кабель RG-58 A/U — многожильный. Кабель RG-58 C/U про­ходит «военную приемку». Все эти разновидности кабеля имеют волновое сопротивление 50 Ом, но обладают худшими механическими и электрическими характеристиками по сравнению с «толстым» коаксиальным кабелем. Тонкий внутренний проводник 0,89 мм не так прочен, зато обладает гораздо большей гибкостью, удобной при монтаже. Затухание в этом типе кабеля выше, чем в «толстом» коаксиальном кабеле, что приводит к необходимости уменьшать длину кабеля для получения одинакового затухания в сегменте. Для соединения кабелей с оборудованием используется разъем типа BNC.

RG-59 — телевизионный кабель с волновым сопротивлением 75 Ом. Широко применяется в кабельном телевидении.

в RG-62 — кабель с волновым сопротивлением 93 Ома, использовался в сетях ArcNet, оборудование которых сегодня практически не выпускается. Коаксиальные кабели с волновым сопротивлением 50 Ом (то есть «тонкий» и, «толстый») описаны в стандарте EIA/TIA-568. Новый стандарт EIA/TIA-568A S коаксиальные кабели не описывает, как морально устаревшие.

Волоконно-оптические кабели

Волоконно-оптические кабели состоят из центрального проводника света (сердце- вины) — стеклянного волокна, окруженного другим слоем стекла — оболочкой, об- ладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего' слоя оболочки. В зависимости от распределения показателя преломления и от величины диаметра сердечника различают:

• многомодовое волокно со ступенчатым изменением показателя преломления;

(рис. 2.11, а);

• многомодовое волокно с плавным изменением показателя преломления (рис. 2.11,6);

• одномодовое волокно (рис. 2.11,е).



Поделиться:


Последнее изменение этой страницы: 2016-06-29; просмотров: 2290; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.36.10 (0.083 с.)