Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие научной картины мира

Поиск

Само понятие «научная картина мира появилось в естествознании и философии в конце 19 в., однако специальный, углубленный анализ его содержания стал проводиться с 60-х годов 20 века. И, тем не менее, до сих пор однозначное толкование этого понятия не достигнуто. Дело в том, что само это понятие несколько размыто, занимает промежуточное положение между философским и естественнонаучным отражением тенденций развития научного познания. Так существуют общенаучные картины мира и картины мира с точки зрения отдельных наук, например, физическая, биологическая…, или с точки зрения каких-либо господствующих методов, стилей мышления - вероятностно-статистическая, эволюционистская, системная, информационно-кибернетическая, синергетическая и т.п. картины мира. В то же время, можно дать следующие объяснение понятия научной картины мира. (НКМ).

Научная картина мира включает в себя важнейшие достижения науки, создающие определенное понимание мира и места человека в нем. В нее не входят более частные сведения о свойствах различных природных систем, о деталях самого познавательного процесса. При этом НКМ не является совокупностью общих знаний, а представляет собой целостную систему представлений об общих свойствах, сферах, уровнях и закономерностях природы, формируя, таким образом, мировоззрение человека.

В отличие от строгих теорий НКМ обладает необходимой наглядностью, характеризуется сочетанием абстрактно-теоретических знаний и образов, создаваемых с помощью моделей.

Особенности различных картин мира выражаются в присущих им парадигмах.

Парадигма (<греч. – пример, образец) – совокупность определенных стереотипов в понимании объективных процессов, а также способов их познания и интерпретации.

Таким образом, можно дать следующее определение НКМ.

НКМ – это особая форма систематизации знаний, преимущественно качественное их обобщение, мировоззренческий синтез различных научных теорий.

Формирование механической картины мира (МКМ)

В истории науки научные картины мира не оставались неизменными, а сменяли друг друга, таким образом, можно говорить об эволюции научных картин мира. Наиболее наглядной представляется эволюция физических картин мира: натурфилософской – до 16-17 вв., механистической – до второй половины 19 в., термодинамической (в рамках механистической теории) в 19 в, релятивистской и квантово-механической в 20-м веке. На рис.1 схематично

представлено развитие и смена научных картин мира в физике.

Физическая картина мира создается благодаря фундаментальным экспериментальным измерениям и наблюдениям, на которых основываются теории, объясняющие факты и углубляющие понимание природы. Физика – это экспериментальная наука, поэтому она не может достичь абсолютных истин (как и само познание в целом), поскольку эксперименты сами по себе несовершенны. Этим обусловлено постоянное развитие научных представлений.

Основные понятия и законы МКМ

МКМ складывалась под влиянием материалистических представлений о материи и формах ее существования. Основополагающими идеями этой картины Мира являются классический атомизм, восходящий к Демокриту и т.н. механицизм. Само становление механической картины справедливо связывают с именем Галилео Галилея, впервые применившего для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и последующей математической обработкой результатов. Этот метод принципиально отличался от ранее существовавшего натурфилософского способа, при котором для объяснения явлений природы придумывались априорные (<лат. a priori – букв. до опыта), т.е. не связанные с опытом и наблюдением, умозрительные схемы, для объяснения непонятных явлений вводились дополнительные сущности, например мифическая “жидкость” теплород, определявшая нагретость тела или флогистон – субстанция, обеспечивающая горючесть вещества (чем больше флогистона в веществе, том лучше оно горит).

Законы движения планет, открытые Иоганном Кеплером, в свою очередь, свидетельствовали о том, что между движениями земных и небесных тел не существует принципиальной разницы (как полагал Аристотель), поскольку все они подчиняются определенным естественным законам.

Ядром МКМ является механика Ньютона (классическая механика).

Формирование классической механики и основанной на ней механической картины мира происходило по 2-м направлениям (см. рис.2):

1) обобщения полученных ранее результатов и, прежде всего, законов свободного падения тел, открытых Галилеем, а также законов движения планет, сформулированных Кеплером;

2) создания методов для количественного анализа механического движения в целом.

В первой половине 19 в. наряду с теоретической механикой выделяется и прикладная (техническая) механика, добившаяся больших успехов в решении прикладных задач. Все это приводило к мысли о всесилии механики и к стремлению создать теорию теплоты и электричества так же на основе механических представлений. Наиболее четко эта мысль была выражена в 1847 г. физиком Германом Гельмгольцем в его докладе “О сохранении силы”:

“Окончательная задача физических наук заключается в том, чтобы явления природы свести к неизменным притягательным и отталкивающим силам, величина которых зависит от расстояния”

В любой физической теории присутствует довольно много понятий, но среди них есть основные, в которых проявляется специфика этой теории, ее базис, мировоззренческая сущность. К таким понятиям относят т.н. фундаментальные понятия, а именно: материя, движение, пространство, время, взаимодействие.

Каждое из этих понятий не может существовать без четырех остальных. Вместе они отражают единство Мира. Как же раскрывались эти фундаментальные понятия в рамках МКМ?

МАТЕРИЯ. Материя, согласно МКМ – это вещество, состоящее из мельчайших, далее неделимых, абсолютно твердых движущихся частиц – атомов, т.е. в МКМ были приняты дискретные (дискретный – “прерывный”), или, другими словами, корпускулярные представления о материи. Вот почему важнейшими понятиями в механике были понятия материальной точки и абсолютно твердого тела (Материальная точка – тело, размерами которого в условиях данной задачи можно пренебречь, абсолютно твердое тело – система материальных точек, расстояние между которыми всегда остается неизменным).

ПРОСТРАНСТВО. Вспомним, что Аристотель отрицал существование пустого пространства, связывая пространство, время и движение. Атомисты 18-19 вв. наоборот, признавали атомы и пустое пространство, в котором атомы движутся. Ньютон, впрочем, рассматривал два вида пространства:

-относительное, с которым люди знакомятся путем измерения пространственных отношения между телами;

-абсолютное, которое по самой своей сущности безотносительно к чему бы то ни было и внешнему и остается всегда одинаковым и неподвижным; т.е. абсолютное пространство – это пустое вместилище тел, оно не связано со временем, и его свойства не зависят от наличия или отсутствия в нем материальных объектов. Пространство в Ньютоновской механике является

Впоследствии А. Эйнштейн, анализируя понятия абсолютного пространства и абсолютного времени, писал: “Если бы материя исчезла, то осталось бы только пространство и время (своего рода сцена, на которой разыгрываются физические явления)”. В этом случае пространство и время не содержат никаких особых “меток”, от которых можно было бы вести отсчет и ответить на вопросы “Где?” и “Когда?” Поэтому для изучения в них материальных объектов необходимо вводить систему отсчета (систему координат и часы). Система отсчета, жестко связанная с абсолютным пространством, называется инерциальной.

трехмерным (положение любой точки можно описать тремя координатами),

непрерывным,

бесконечным,

однородным (свойства пространства одинаковы в любой точке),

изотропным (свойства пространства не зависят от направления).

Пространственные отношения в МКМ описываются геометрией Евклида.

ВРЕМЯ. Ньютон рассматривал два вида времени, аналогично пространству: относительное и абсолютное. Относительное время люди познают в процессе измерений, а абсолютное (истинное, математическое время) само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Таким образом, и время у Ньютона, аналогично пространству – пустое вместилище событий, не зависящее ни от чего. Время течет в одном направлении – от прошлого к будущему.

ДВИЖЕНИЕ. В МКМ признавалось только механическое движение, т.е. изменение положения тела в пространстве с течением времени. Считалось, что любое сложное движение можно представить как сумму пространственных перемещений (принцип суперпозиции). Движение любого тела объяснялось на основе трех законов Ньютона, при этом использовались такие важные понятия как сила и масса. Под силой в МКМ понимается причина изменения механического движения и причина деформации. Кроме того, было замечено, что силы удобно сравнивать по вызываемым ими ускорениям одного и того же тела (m = const). Дейсвительно, из 2-го закона следует, что F1/F2 = a12, величина же m = F/a для данного тела было величиной постоянной и характеризовала инертность тела. Таким образом,

количественная мера инертности тела есть его инертная масса.

ВЗАИМОДЕЙСТВИЕ. Здесь следует вернуться в наше время и посмотреть, как решается вопрос о взаимодействиях (первопричине, природе сил) в рамках современной научной картины Мира. Современная физика все многообразие взаимодействий сводит к 4-м фундаментальным взаимодействиям: сильному, слабому, электромагнитному и гравитационному. В дальнейшем они будут рассмотрены более подробно. Здесь же остановимся на гравитационном.

Гравитационное взаимодействие означает наличие сил притяжения между любыми телами.

Величина этих сил может быть определена из закона всемирного тяготения. Если же известна масса одного из тел (эталона) и сила гравитации, можно определить и массу второго тела.

Масса, найденная из закона всемирного тяготения, получила название гравитационной.

Ранее уже говорилось о равенстве этих масс, поэтому масса является одновременно и мерой инертности и мерой гравитации. Гравитационные силы являются универсальными. Ньютон ничего не говорил о природе гравитационных сил. Интересно, что и в настоящее время их природа все еще остается проблематичной.

Следует сказать, что в классической механике вопрос о природе сил, собственно, и не стоял, вернее, не имел принципиального значения. Просто все явления природы сводились к трем законам механики и закону всемирного тяготения, к действию сил притяжения и отталкивания.

Основные принципы МКМ

Важнейшими принципами МКМ являются:

принцип относительности,

принцип дальнодействия,

принцип причинности.

Принцип относительности Галилея. Принцип относительности Галилея утверждает, что все инерциальные системы отсчета (ИСО) с точки зрения механики совершенно равноправны (эквивалентны). Переход от одной ИСО к другой осуществляется на основе преобразований Галилея.

Принцип дальнодействия. В МКМ было принято, что взаимодействие передается мгновенно, и промежуточная среда в передаче взаимодействия участия не принимает. Это положение и было названо принципом дальнодействия.

Принцип причинности. Как уже было сказано, в МКМ все многообразие явлений природы к механической форме движения материи (механистический материализм, механицизм). С другой стороны известно, что беспричинных явлений нет, что всегда можно (принципиально) выделить причину и следствие. Причина и следствие взаимосвязаны, влияют друг на друга.

Следствие одной причины может стать причиной другого следствия. Эту мысль развивал математик Лаплас, утверждая следующее: “Всякое имеющее место явление связано с предшествующим на основании того очевидного принципа, что оно не может возникнуть без производящей причины. Противоположное мнение есть иллюзия ума.” Т.е. Лаплас полагал, что все связи между явлениями осуществляется на основе однозначных законов.

Это учение обусловленности одного явления другим, об их однозначной закономерной связи вошло в физику как так называемый лапласовский детерминизм (детерминизм – предопределенность). Существенные однозначные связи между явлениями выражаются физическими законами.

Лекция 6. Квантово-полевая картина мира (КПКМ)

1. Формирование идеи квантования физических величин

2. Корпускулярно-волновой дуализм света и вещества

3. Основные понятия и принципы КПКМ

В основе современной КПКМ лежит новая физическая теория – квантовая механика, описывающая состояние и движение микрообъектов. Это – четвертая (после механики, электродинамики и теории относительности) фундаментальная физическая теория. Она является базой для развития современного естествознания.

В основе квантовой механики лежат фундаментальные идеи о квантовании физических величин и корпускулярно-волновом дуализме (единстве корпускулярного и континуального подхода к описанию мира).

1. Формирование идеи квантования физических величин

Определение: физические величины, которые могут принимать лишь определенные дискретные значения, называются квантованными. А само их выражение через квантовые числа называется квантованием. Сама идея квантования сформировалась на основе ряда открытий в конце 19-го – начале 20-го века. Рассмотрим основные из них.

Открытие электрона. В 1897 г. был открыт электрон. Его заряд оказался наименьшим, элементарным. Заряд любого тела равен целому числу элементарных зарядов. Таким образом, заряд дискретен, а равенство q=±ne представляет собой форму квантования электрического заряда.

Тепловое излучение. Во второй половине 19 в. в результате исследования теплового излучения был открыт ряд законов: Кирхгофа, Стефана-Больцмана, Вина. Однако из теории, основанной на традиционных представлениях об электромагнитных излучениях, следовало, что энергия теплового излучения на всех частотах (во всем интервале длин волн) равнялась бесконечности, что противоречило закону сохранения энергии. Особенно ярко это противоречие проявлялось в области коротких длин волн, поэтому оно получило название «ультрафиолетовой катастрофы».

В 1900 г. Макс Планк (1858-1947) для выхода из этой ситуации предложил следующую гипотезу (впоследствии названную квантовой гипотезой Планка): электромагнитное излучение испускается отдельными порциями – квантами, величина которых пропорциональна частоте излучения. Гипотеза Планка фактически стала началом новой физики – квантовой физики (старая при этом получила название классической). Согласно этим представлениям энергия кванта e = h*n, где n - частота, а h – постоянная Планка, равная 6,626*10-34 Дж*с. Она является фундаментальной физической константой (квант действия).

Таким образом, если в классической физике считалось, что энергия может изменяться непрерывно и принимать любые, сколь угодно близкие значения, то согласно квантовым представлениям, она может принимать лишь дискретные значения, равному целому числу квантов энергии W =n*h*n, где n = 1,2,3… - целые числа.

В конце 19 в. в результате экспериментов были установлены законы фотоэффекта – явления выбивания электронов из вещества под действием света: 1) независимость энергии выбиваемых электронов от интенсивности света, а зависимость ее только от частоты световой волны и 2) наличие для каждого вещества «красной» границы фотоэффекта, т.е. минимальной частоты, при которой фотоэффект еще возможен. Эти законы не могли быть объяснены на основе представлений ЭМКМ.

В 1905 г. А. Эйнштейн, приняв гипотезу Планка, расширил ее, предположив, что свет не только излучается квантами, но и распространяется и поглощается тоже квантами (названными впоследствии фотонами). Таким образом, свет представляет собой поток световых частиц – фотонов. Как видно, это возвращает нас к корпускулярным воззрениям Ньютона, но на новом уровне.

Энергия фотона e = h*n = mc2, импульс P = mc = hn/c = h/l. Эти соотношения означали, что масса покоя фотона m0 = 0 (покоящийся фотон не существует), а скорость его равна скорости света. Масса движения фотона m = hn/c2 = P/c. На основе фотонных представлений и закона сохранения и превращения энергии Эйнштейн записывает основное уравнение фотоэффекта

hn = A + Eк (энергия фотона расходуется на работу выхода электрона из атома и придание ему кинетической энергии.



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 1870; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.105.4 (0.007 с.)