Мероприятия по удалению всосавшегося яда 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Мероприятия по удалению всосавшегося яда



Форсированный диурез, как метод детоксикации, основан на применении осмотических диуретиков или салуретиков. Это наиболее распространенный метод консервативного лечения отравлений в тех случаях, когда гидрофильные токсические вещества выводятся преиму- щественно почками.

Эффективность водной нагрузки и ощелачивания мочи при тяжелых отравлениях значи- тельно снижается ввиду недостаточной скорости диуреза, вызванной повышенной секрецией ан- тидиуретического гормона, гиповолемией и гипотензией, поэтому требуется дополнительное введение диуретиков, чтобы уменьшить реабсорбцию, т. е. способствовать более быстрому про- хождению фильтрата через нефрон и тем самым повысить диурез и элиминацию токсических ве- ществ из организма. Этим целям лучше всего отвечают осмотические диуретики (мочевина, ман- нитол, трисамин).

Истинный осмотический диуретик должен распределяться только во внеклеточном секто- ре, не подвергаться метаболическим превращениям, полностью фильтроваться через базальную мембрану клубочка, не реабсорбироваться в канальцевом аппарате почки.

Маннитол наилучший, широко применяемый истинный осмотический диуретик. Пре- парат распространяется только во внеклеточной среде, не подвергается метаболизму, не реабсор- бируется канальцами почек.

Трисамин (3-гидроксиметил-аминометан) также полностью удовлетворяет требовани- ям, предъявляемым к истинным диуретикам, является и активным буферным средством, повы- шающим внутри- и внеклеточный рН и ощелачивающим мочу. Однако при попадании под кожу препарат вызывает некроз, а его передозировка чревата гипогликемией и угнетением дыхатель- ного центра. Трисамин вводят внутривенно в виде 3,66% раствора из расчета 1,5 г/(кг • сут).

Мочевина — условный осмотический диуретик, распределяется в организме путем сво- бодной диффузии. Мочевина не подвергается метаболизму, не токсична, но высоко концентриро- ванные растворы повреждают интиму вен и могут быть источником флебитов. При нарушении функции почек введение мочевины может резко повысить содержание азота в организме, и в этих случаях она не назначается.

В настоящее время для проведения форсированного диуреза наиболее часто используют лазикс (фуросемид). Диуретическое действие лазикса, относящегося к группе салуретиков и применяемого в дозе 100—150 мг, сравнимо с действием осмотических диуретиков, но при его повторном введении возможны более значительные потери электролитов, особенно калия, что требует коррекции электролитного состава крови.

Методика форсированного диуреза предусматривает предварительную водную нагрузку, введение диуретика и заместительную инфузию растворов электролитов.

Развивающуюся при тяжелых отравлениях гиповолемию компенсируют внутривенным введением плазмозаменяющих растворов (изотонический раствор натрия хлорида, реополиглю- кин, 5% раствор глюкозы в объеме 1—1,5 л). Одновременно рекомендуется ввести постоянный катетер в мочевой пузырь с целью измерения почасового диуреза. Мочевину или маннитол (15- 20% раствор) вводят внутривенно струйно в количестве 1—1,5 г/кг в течение 10—15 мин, затем вводят раствор электролитов со скоростью, равной скорости диуреза. Высокий диуретический эффект (500-800 мл/ч) сохраняется в течение 3-4 ч, затем осмотическое равновесие восстанавли- вается, и при необходимости весь цикл повторяется снова. Сочетанное применение осмотических диуретиков с салуретиками (лазикс) позволяет увеличить диуретический эффект в 1,5 раза.


 

Высокая скорость и большой объем форсированного диуреза, достигающего 10-20 л/сут, таят в себе потенциальную опасность быстрого «вымывания» из организма электролитов плазмы. Следовательно, вводимый солевой раствор электролитов должен содержать основные электроли- ты в концентрации несколько более высокой, чем их концентрация в моче, с учетом того, что часть водной нагрузки создается плазмозамещающими растворами. Оптимальный вариант такого раствора: калия хлорид — 13,5 ммоль/л и натрия хлорид — 120 ммоль/л, с последующим контро- лем и дополнительной коррекцией при необходимости.

Концентрация кальция в моче широко варьирует и никак не зависит от скорости диуреза, но средние значения близки к нормальной концентрации в плазме: 4,5-5,7 ммоль/л. Это означает, что на каждые 10 л выведенной мочи требуется введение всего 10 мл 10% раствора кальция хло- рида — этого будет достаточно для компенсации.

Корреляции между скоростью диуреза и концентрацией ионов магния в моче не обнару- жено. Потеря этого электролита в основном не превосходит 20 ммоль/л при диурезе более 2 мл/мин. Специальной компенсации не требуется и введение солей магния должно быть связано с другими клиническими целями.

Форсированный диурез иногда называют «промыванием крови», и связанная с ним водно- электролитная нагрузка предъявляет повышенные требования к сердечно-сосудистой, лимфати- ческой системе и почкам. Строгий учет введенной и выделенной жидкости, определение гема- токрита и центрального венозного давления позволяют легко контролировать водный баланс ор- ганизма в процессе лечения, несмотря на высокую скорость диуреза. Осложнения форсированно- го диуреза (гипергидратация, гипокалиемия, гипохлоремия) связаны только с техническими по- грешностями. Во избежание тромбофлебита в месте введения растворов рекомендуется исполь- зование подключичной вены. При длительном применении осмотических диуретиков (более 3 сут) возможно развитие осмотического нефроза и острой почечной недостаточности. Длитель- ность форсированного диуреза обычно ограничивают этими сроками, а осмотические диуретики комбинируют с салуретиками.

Форсированный диурез противопоказан при интоксикациях, осложненных острой сер- дечно-сосудистой недостаточностью (стойкий коллапс, нарушение кровообращения II-III стадии), а также при нарушениях функции почек (олигурия, азотемия, повышение содержания креатинина крови более 0,22 ммоль/л), что связано с низким объемом фильтрации. У больных старше 50 лет эффективность форсированного диуреза по той же причине заметно снижена.

Гемосорбция (ГС) это метод экстракорпоральной искусственной детоксикации, осно- ванный на адсорбции чужеродных веществ крови на поверхности твердой фазы, моделирующий адсорбцию ядовитых веществ на макромолекулах организма.

В подавляющем большинстве случаев ГС является самой популярной в нашей стране опе- рацией при лечении экзогенных отравлений, в связи с ее высокой эффективностью и простотой исполнения. Операция может проводиться безаппаратным методом, если в качестве сосудистого доступа используется артериовенозный шунт, и аппаратным, тогда сосудистый доступ обычно основан на создании вено-венозного доступа. Обычно катетеризируются две центральные вены, но иногда кровь возвращают в периферическую вену, что значительно ограничивает скорость перфузии. Для проведения ГС используют любые аппараты с роликовым насосом (АТ-1, АТ-2, АКСТ-1, УАГ-01, Унирол-05, аппараты для гемодиализа и др.), одноразовую магистральную сис- тему и гемосорбент, от типа которого зависят качественные и количественные параметры ГС.

Высокая эффективность гемосорбции обнаруживается при острых пероральных отравле- ниях практически всеми жирорастворимыми веществами и большинством высокотоксичных гид- рофильных соединений. Исключение составляют лишь отравления спиртами и солями тяжелых металлов, при которых применение гемодиализа более предпочтительно. Например, при отравле- ниях высокотоксичным гидрофобным фосфорорганическим инсектицидом карбофосом после проведения ГС в первые 3 ч с момента отравления у больных в дальнейшем не обнаруживается типичных осложнений (интоксикационный психоз, миопатия). Одним из путей повышения эф- фективности этой операции является ее применение на догоспитальном этапе, т. е. на 30—60 мин раньше, чем это возможно в стационаре. Наибольшее значение это имеет при отравлениях высо- котоксичными ядами, способными быстро всасываться в желудочно-кишечном тракте (фосфо- рорганические инсектициды, дихлорэтан, амитриптилин и др.).


 

На основании многолетних исследований, проводимых в клинике военно-полевой терапии ВМедА, разработана оптимальная, с нашей точки зрения, программа детоксикационных меро- приятий при отравлениях гидрофобными ФОС, обладающими большим объемом распределения. Для этого предложена модифицированная методика гемосорбции с большим суммарным объ- емом (до 10-20 ОЦК) и высокой скоростью перфузии (400-500 мл/мин). Сущность этой методики заключается в выполнении операции одновременно по двум автономным контурам. С этой целью катетеризируются подключичная и две бедренные вены, одна из которых — двумя катетерами. Смену колонок с сорбентом проводят через каждые 20—25 л перфузии.

Перфузионный контур промывают раствором с 5000 ЕД гепарина в сочетании с массивной гепаринизацией (введение гепарина 500 ЕД/кг массы тела больного). Применение этой методики позволило сократить длительность токсикогенной стадии отравления карбофосом с 5 до 3 сут и уменьшить общую летальность на 18% и более.

Разработан и внедрен в клиническую практику также пролонгированный вариант гемо- сорбции: с высокой скоростью (200—250 мл/мин) перфузируют 3—5 ОЦК, затем кровь пропус- кают через массообменник со скоростью 60—100 мл/мин в течение 6—8 ч. для удаления токси- канта из тканевых депо. Оптимальными гемосорбентами для выполнения высокоскоростной и высокообъемной операции гемосорбции являются СКН-2М, СКН-2К и СКН-К, которые в значи- тельно меньшей степени травмируют клетки крови и не приводят к развитию выраженной крово- точивости вследствие разрушения тромбоцитов и анемии.

После операции гемосорбции уменьшается количество низкостойких эритроцитов, норма- лизуется агрегация эритроцитов и тромбоцитов, увеличивается фибринолитическая активность плазмы, снижается содержание фибриногена в сыворотке крови.

Осложнения операции гемосорбции встречаются довольно редко и обычно связаны с тех- ническими погрешностями подготовки сорбента и проведения гемоперфузии, неправильным оп- ределением показаний, недостаточной предоперационной подготовкой больного.

Осложнения подразделяются на гемодинамические, нейровегетативные и иммунологиче-


ские.


 

Среди гемодинамических осложнений основное место занимает ранняя (в первые 5—7


мин гемоперфузии) или поздняя (после окончания операции) гипотензия, в основе которой лежит относительная гиповолемия вследствие централизации кровообращения в ответ на кровотечение в дополнительный контур перфузии, создаваемый колонкой-детоксикатором и кровопроводящи- ми путями аппарата, а также сорбция эндогенных катехоламинов, поддерживающих необходимое периферическое сосудистое сопротивление.

Нейровегетативные расстройства связаны с раздражающим влиянием на эндоваску- лярные рецепторы мелких частичек сорбентов, проникающих в кровоток при гемоперфузии, а также продуктов деструкции клеток крови и белков, в определенной степени неизбежной при прямом контакте крови с поверхностью твердой фазы.

Иммунологические осложнения зависят от степени сорбции иммуноглобулинов и инди- видуальной возможности их быстрой компенсации в условиях более или менее длительной гемо- перфузии, а также общей иммуносупрессии, связанной с большим «стрессовым» влиянием хими- ческой травмы на иммунную систему.

Для снижения повреждающего влияния естественных сорбентов на кровь используют ге- модилюцию, введение больному в процессе операции парентерально 30—60 мг преднизолона и адекватных доз симпатомиметиков, а перед началом процедуры обрабатывают поверхность угля 5000 ЕД гепарина.

Гемодилюцию проводят перед операцией с помощью внутривенного введения электро- литных и плазмозамещающих растворов для снижения гематокрита до 30—35%.

Явления иммуносупрессии можно снизить с помощью ультрафиолетового облучения кро-


ви.


 

Основными противопоказаниями к операции гемосорбции являются стойкое падение ар-


териального давления, особенно при снижении общего периферического сопротивления, стойкое нарушение гомеостаза с явлениями фибринолиза, тромбоцитопении и анемии.

Детоксикационная гемосорбция обладает рядом преимуществ по сравнению с гемо- и пе- ритонеальным диализом. Это прежде всего техническая простота и высокая скорость детоксика-


 

ции, а также неспецифичность, которая позволяет эффективно ее использовать при отравлениях жирорастворимыми препаратами, плохо или практически не диализирующимися в аппарате «ис- кусственная почка» (барбитураты короткого действия, фенотиазины, бензодиазепины и др.).

Методы диализной терапии основаны на свойстве искусственных (гемодиализ) и естест- венных (перитонеальный и кишечный диализ) полупроницаемых мембран пропускать низкомо- лекулярные вещества по градиенту концентрации. Наибольшей популярностью в современных условиях пользуются гемодиализ и перитонеальный диализ.

Гемодиализ (ГД) это метод экстракорпоральной детоксикации, в основе которого лежат механизмы молекулярной диффузии и ультрафильтрации через искусственную полупроницае- мую мембрану. Для проведения операции раннего детоксикационного гемодиализа пригоден практически любой аппарат «Искусственная почка», может быть применен как ацетатный, так и бикарбонатный диализ. В качестве сосудистого доступа, как правило, используется вено- венозный путь катетеризации центральных вен. Скорость перфузии составляет 150-250 мл/мин, объем перфузии от 5 до 10 ОЦК, продолжительность сеанса ГД 3-6 ч.

Проведение гемодиализа с целью удаления всосавшегося яда показано при отравлениях водорастворимыми низкомолекулярными соединениями (размер молекулы не более 8 нм), яд не должен быть полностью связан с белками плазмы и должен циркулировать в крови в связанном виде. Гемодиализ абсолютно показан при отравлениях токсичными спиртами, гликолями, солями тяжелых металлов. Основное противопоказание к проведению этой операции заключается в на- личии у больного экзотоксического шока с выраженными нарушениями системной гемодинами- ки.

В соматогенной фазе отравления ГД применяется с целью лечения острой почечной недос- таточности.

Осложнения гемодиализа могут быть связаны с выполнением сосудистого доступа, а также технического характера: неисправность аппарата в процессе операции, разрыв перфузион- ного контура. Кроме того, возможны клинические осложнения, связанные с гепаринизацией и расстройствами гемодинамики.

Перитонеальный диализ (ПД) относится к интракорпоральным методам хирургической детоксикации. В качестве естественной мембраны выступает брюшина, что и обусловливает принципиальные отличия этой операции, ее преимущества и недостатки. Во время проведения процедуры используют, в основном, два механизма детоксикации — экстракцию липофильного вещества из его естественных депо (сальника) и собственно диализ яда через брюшину из систе- мы мезентериальных сосудов.

Мезентериальные сосуды, располагающиеся в брюшине и отводящие кровь от кишечника в портальную систему, содержат токсикант в высокой концентрации, и его диализ дает возмож- ность предупреждать в той или иной степени гепатотоксическое действие ядов. Поверхность брюшины неоднородна, поры нижних ее отделов проницаемы для крупномолекулярных соедине- ний, что обеспечивает возможность элиминации ядов, связанных с белками, и продуктов эндо- генной интоксикации. Значимым преимуществом ПД является незначительное влияние операции на гемодинамику больного, что позволяет проводить ее даже в критических ситуациях.

Однако по эффективности ПД уступает ГД, а также требует конкретных хирургических навыков, техники и большого количества стерильного диализующего раствора. ПД может при- вести к серьезным осложнениям, связанным как с формированием доступа для проведения диа- лиза (ранения органов брюшной полости, кровотечения, раневая инфекция, послеоперационные грыжи), так и с состоянием диализного катетера (нарушение проходимости, инфицирование). В связи с этими обстоятельствами, ПД используют в токсикологической практике несравнимо ре- же, нежели классический гемодиализ и гемосорбцию. Показаниями для проведения ПД могут быть отравления липофильными соединениями: хлорированными углеводородами, фосфорорга- ническими соединениями, — особенно при наличии серьезных гемодинамических расстройств.

Относительно недавно появились сообщения, посвященные оригинальной модификации гемо- и перитонеального диализа с использованием принципа молекулярной ловушки. Суть ме- тода состоит в том, что в диализируюший раствор добавляют липофильные вещества (масла, перфторуглероды), способные накапливать жирорастворимые яды, например, карбофос, дихлорэ- тан. Концентрация карбофоса в перитонеальном диализате в модельных экспериментах увеличи-


 

валась в 8—10 раз по сравнению с традиционной схемой лечения [Сосюкин А. Е., 1997]. Пред- ставляются перспективными поиски новых препаратов, позволяющих повысить диализабель- ность токсикантов.

Операция обменного замещения крови (ОЗК) в настоящее время применяется крайне редко. Исключение составляет детская практика. Операция заключается в одновременно прово- димом и равном по объему кровопускании и переливании одногруппной и резус-совместимой крови. Учитывая, что для практически полного (80—95%) замещения необходима гемотрансфу- зия в объеме 10-15 л, то понятно, что в клинической практике, если и используется, то частичная ОЗК в объеме до 3 литров. Такая методика резко снижает эффективность операции, так как даже при распределении вещества только во внеклеточном секторе (что встречается крайне редко), удается удалить у взрослого не более 10% яда, в то время как опасность гемотрансфузионных ос- ложнений сохраняется.

Показаниями для проведения ОЗК могут быть тяжелые отравления метгемоглобинообра- зующими ядами (содержание MtHb > 50%), при невозможности проведения гипербарической ок- сигенации и антидотной терапии; отравления большими дозами гемолитических ядов (мышьяко- вистый водород).

Сочетанное применение методов детоксикации. Эффективность детоксикационной те- рапии можно усилить сочетанным применением разных методов, когда суммарный клиренс ток- сического вещества возрастает соответственно влиянию каждого из одновременно или последо- вательно применяемых способов детоксикации.

При пероральных отравлениях наиболее выгодным с этой точки зрения представляется одновременное применение сорбции или диализа и длительного зондового промывания кишеч- ника. Это позволяет осуществлять длительную и непрерывную детоксикацию на протяжении всей токсикогенной стадии отравления, что особенно важно при депонировании ядов в кишечни- ке у больных с отравлением фосфорорганическими инсектицидами, снотворными препаратами и др. При этом удается предупредить повторное поступление яда из ЖКТ в кровоток.

Последовательное применение кишечного лаважа, перитонеального диализа и после ста- билизации системной гемодинамики гемосорбции рекомендуется при выраженном экзотоксиче- ском шоке.

Таким образом, метод выбирают с учетом физико-химических свойств токсических ве- ществ, вызвавших отравление, их концентрации в крови, клинической картины отравления, вы- раженности проявлений экзотоксического шока и возможных отрицательных влияний на дея- тельность сердечно-сосудистой системы. Сочетанное одновременное или последовательное при- менение нескольких методов при критической и тем более смертельной концентрации ядов в крови обеспечивает необходимую непрерывность детоксикации организма.

Эффективное использование искусственных методов детоксикации возможно только при условии предварительного и одновременного проведения всего комплекса интенсивной профи- лактики и лечения основных патологических синдромов.

Антидотная терапия

 

История токсикологии — это в значительной степени история поиска специфических про- тивоядий (антидотов) — наиболее радикальных этиотропных фармакологических средств лече- ния отравлений.

Антидот (противоядие, «даваемое против») — это фармакологическое средство, применяемое при лечении отравлений и способствующее обезвреживанию яда или преду- преждению и устранению вызываемого им токсического эффекта» Таким образом, антидот является фармакологическим антагонистом.

Основы классификации антидотных средств разработаны С. Н. Голиковым и С. И. Лок- тионовым (1977). В современном понимании к антидотам относят:

1. Препараты, инактивирующие яды путем взаимодействия с ними:

— прямого химического;

— опосредованного химического;

— иммунологического.


 

2. Препараты, устраняющие последствия воздействия ядов на биологические структуры по одному из следующих механизмов:

а) биохимическому;

б) физиологическому (функциональному, фармакологическому).

Ранее к средствам антидотной терапии относили и активированный уголь как неспецифи- ческий сорбент. В настоящее время этот метод лечения отравлений относят к энтеросорбции (га- строинтестинальная сорбция).

Антидоты прямого химического взаимодействия. Антидоты этой группы непосредст- венно связываются с токсикантами. При этом происходит химическая нейтрализация свободно циркулирующего яда или образование малотоксичного комплекса.

Наиболее распространенными представителями данной группы противоядий являются хе- латирующие агентыкомплексообразователи. К этим средствам относятся вещества, уско- ряющие элиминацию из организма металлов путем образования с ними водорастворимых ма- лотоксичных комплексов, легко выделяющихся через почки.

Производные полиаминполикарбоновых кислот (тетацин-кальций) активно связывают свинец, цинк, кадмий, никель, хром, медь, марганец, кобальт. Комплексообразователи, имеющие в структуре две тиоловые (-SH) группы (унитиол, сукцимер), используются для выведения из организма мышьяка, ртути, сурьмы, кобальта, цинка, хрома, никеля. Препараты с одной тиоло- вой группой (d-пеницилламин, N-ацетилпеницилламин) образуют менее прочные комплексы с этими металлами, но в отличие от последних всасываются в желудочно-кишечном тракте и пото- му могут назначаться через рот.

Другие хелатирующие препараты такие, как дефероксамин, избирательно связывают желе- зо, а прусская синь (калия ферроцианат) — таллий.

Антидоты опосредованного химического взаимодействия. К таким противоядиям отно- сятся метгемоглобинообразователи — антидоты цианидов и сульфидов, в частности натрия нит- рат, амилнитрит, антициан. Как и прочие метгемоглобинообразователи, эти вещества окисляют двухвалентное железо гемоглобина до трехвалентного состояния.

Основным механизмом токсического действия цианидов и сульфидов является взаимодей- ствие с трехвалентным железом цитохромоксидазы, которая утрачивает при этом свою физиоло- гическую активность. С железом, находящимся в двухвалентном состоянии (гемоглобин), эти токсиканты не реагируют. Если отравленному быстро ввести в необходимом количестве метге- моглобинообразователь, то образующийся метгемоглобин (железо трехвалентное) будет вступать в химическое взаимодействие с ядами, связывая их и препятствуя поступлению в ткани. Более того, концентрация токсикантов в плазме крови понизится и возникнут условия для разрушения обратимой связи сульфид- и/или циан-иона с цитохромоксидазой.

Иммунные противоядия. Антидоты этой группы разрабатываются на основе принципа получения антител к ядам. На практике существуют значительные ограничения возможности ис- пользования антител (в том числе моноклональных) в целях лечения и профилактики многих ин- токсикаций.

В настоящее время показана возможность создания антидотов на рассматриваемом прин- ципе в отношении некоторых фосфорорганических соединений (зоман, малатион, фосфакол), гликозидов (дигоксин), дипиридилов (паракват) и др. Однако в клинической практике препараты, разработанные на принципе иммунного противоядия, применяются в основном в отношении сер- дечных гликозидов и токсинов белковой природы (ядов змей, рицина, ботулотоксина).

Биохимические противоядия. К данной группе относятся препараты, разрушающие связь

«биомишень — яд» или препятствующие образованию подобной связи — кислород, ацизол, ре- активаторы (дипироксим) и обратимые ингибиторы (аминостигмин) холинэстеразы, пири- доксальфосфат или модифицирующие метаболизм ксенобиотиков путем индукции либо ингиби- рования естественных биохимических систем детоксикации (этанол, тиосульфат натрия, ацетил- цистеин, зиксорин, фенобарбитал, левомицетин, перфторан и др.).

Кислород используют при интоксикациях различными веществами, однако специфическим противоядием он является для оксида углерода. Оксид углерода (угарный газ) имеет высокое сродство к двухвалентному железу гемоглобина, с которым образует прочный, хотя и обратимый


 

комплекс — карбоксигемоглобин. Кислород конкурирует с оксидом углерода за связь с гемогло- бином и при высоком парциальном давлении вытесняет его (эффект Холдена).

Реактиваторы холинэстеразы. Вещества, содержащие оксимную группу в молекуле, спо- собны разрушать обратимый комплекс ФОС-энзим, т. е. дефосфорилировать холинэстеразу. Они получили название «реактиваторы холинэстеразы»: пралидоксим (2ПАМ), дипироксим (ТМБ4), токсогонин и др., Препараты малоэффективны при интоксикациях веществами, вызывающими быстрое «старение» холинэстеразы (зоман).

Оксимы способны вступать в химическую реакцию со свободно циркулирующими в крови ФОС, а следовательно, выступать и в качестве химических антагонистов.

При тяжелом остром отравлении гидразином и его производными (ракетные топлива, про- тивотуберкулезные лекарственные препараты) в тканях резко снижается содержание пиридок- сальфосфата. Пиридоксин — антагонист гидразина в действии на организм. При введении в орга- низм отравленного с лечебной целью это вещество превращается в пиридоксаль. В итоге норма- лизуется содержание пиридоксальфосфата в тканях, устраняются многие неблагоприятные эф- фекты гидразина, в частности судорожный синдром.

Еще одним примером биохимического антагониста является метиленовый синий, исполь- зуемый при интоксикациях метгемоглобинообразователями. Этот препарат при внутривенном введении в форме 1% раствора увеличивает активность НАДН-зависимых метгемоглобинре- дуктаз и тем самым способствует понижению уровня метгемоглобина в крови отравленных.

Относительно новым способом ускорения выведения всосавшихся в кровь ядов является фармакологическая регуляция ферментативной активности или стимуляция биохимических ме- ханизмов естественной детоксикации организма, т. е. речь идет о противоядиях, модифициру- ющих метаболизм ксенобиотиков. Суть данного способа сводится к направленному изменению токсикокинетики яда путем модификации скорости его биотрансформации с целью снижения токсичности. Впервые эта идея была высказана А. Соnnеу более 30 лет назад (1967).

Молекулярные механизмы биохимической детоксикации можно условно разделить на два типа. Первый представляет реакции, связанные с функционированием монооксигеназных фер- ментных систем гладкого эндоплазматического ретикулума клеток (система цитохрома Р-450, главным образом печени), и сопряженные с ними реакции конъюгации при действии на организм преимущественно липотропных соединений. Второй — объединяет молекулярные механизмы, локализованные в цитозоле, митохондриях, пероксисомах, лизосомах, и обеспечивает биотранс- формацию водорастворимых ксенобиотиков.

Основные пути регулирования биохимических систем детоксикации состоят в следующем:

повышение (индукция) или снижение (ингибирование) активности процессов биотрас- формации в зависимости от того, в какую сторону изменяется токсичность метаболитов по отно- шению к исходному соединению: меньшую (барбитураты, бензодиазепины) или большую (ди- хлорэтан, малатион, спирты);

активация реакций конъюгации,

купирование побочных эффектов процессов биотрансформации, повышение активно- сти механизмов антирадикальной и антиперекисной защиты.

— модификация активности достаточно специфично действующих энзимов (алкогольде- гидрогеназа, роданаза) при интоксикациях вполне конкретными веществами — спиртами, циани- дами.

В настоящее время помимо родоначальников — фенобарбитала и SKF-525 А — известны многие сотни соединений, способных увеличивать или снижать активность ферментных систем детоксикации. Однако в клинических условиях для модификации токсикокинетики ядов исполь- зуются лишь единицы из этой большой группы препаратов. Все дело в том, что известные до на- стоящего времени индукторы или ингибиторы проявляют эффект слишком поздно или обладают нежелательной физиологической активностью, т. е. сами подвергаются биотрансформации или оказывают специфическое фармакологическое действие, например, вызывают наркотический сон.

Только в последние годы появились сообщения о новых веществах -- химически инертных перфторуглеродных соединениях как возможных средствах управления кинетикой ядов.


 

Используемые в практике оказания помощи отравленным препараты могут быть отнесены к одной из следующих групп:

А. Ускоряющие детоксикацию:

тиосульфат натрия — при отравлениях цианидами;

— ацетилцистеин, перфторан — при отравлениях парацетамолом, дихлорэтаном и неко- торыми другими хлорированными углеводородами, нитрилами.

Б. Ингибиторы метаболизма:

этиловый спирт — при отравлениях метанолом, этиленгликолем;

— левомицетин — при отравлениях дихлорэтаном и другими хлорированными углеводо- родами.

Физиологические противоядия. Эти препараты не вступают с токсикантом в химическое взаимодействие, не вытесняют его из связи с ферментом. В основе антидотного эффекта лежит изменение скорости оборота нейромедиатора в синапсе (ацетилхолина, ГАМК, серотонина и т. д.) и непосредственное действие на постсинаптические рецепторы.

Впервые возможность использования противоядия (атропина) с таким механизмом дейст- вия была установлена Шмидебергом и Коппе (1869). Позже стало известно, что атропин ослабля- ет токсические эффекты, вызываемые пилокарпином и физостигмином, а последний, в свою оче- редь, может ослабить эффекты, вызываемые токсическими дозами атропина. Эти открытия по- служили основанием для становления учения о «физиологическом антагонизме ядов» и «физио- логических противоядиях».

Специфичность физиологических антидотов ниже, чем у веществ с химическим и биохи- мическим антагонизмом. Практически любое соединение, возбуждающее проведение нервного импульса в синапсе, будет эффективно в той или иной степени при интоксикациях веществами, угнетающими проведение импульса, и наоборот. Так, холинолитики оказываются достаточно эф- фективными при отравлении большинством холиномиметиков, а холиномиметики, в свою оче- редь, могут быть использованы при отравлениях антихолинергическими токсикантами.

В качестве физиологических антидотов в настоящее время используют:

атропин и другие холинолитики при отравлениях фосфорорганическими соединениями (хлорофос, дихлофос, фосфакол, зарин, зоман и др.) и карбаматами (прозерин, аминостигмин, байгон и др.);

галантамин, приридостигмин, аминостигмин (обратимые ингибиторы холинэстеразы) при отравлениях атропином, скополамином, BZ, дитраном, димедролом и другими веществами с холинолитической активностью (в том числе трициклическими антидепрессантами и некоторыми нейролептиками);

бензодиазепины, барбитураты при интоксикациях ГАМК-литиками (бикукуллин,

норборнан, бициклофосфаты, пикротоксин и др.);

флюмазенил (антагонист ГАМКА-бензодиазепиновых рецепторов) при интоксикациях бензодиазепинами;

налоксон (конкурентный антагонист опиоидных μ-рецепторов) — антидот наркотиче- ских анальгетиков.

Антидотная терапия в большинстве случаев высокоспецифична и поэтому с оптимальной эффективностью может быть использована при достоверной клинико-лабораторной идентифика- ции острого отравления. В противном случае при ошибочном введении антидота в большой дозе возможно его токсическое влияние на организм.

Эффективность антидотной терапии значительно снижена на терминальной стадии острых отравлений при тяжелых нарушениях кровообращения и газообмена, что требует одновременно- го проведения реанимационных мероприятий.

Попытки корригировать рекомендуемые способы применения антидотов, ориентируясь на состояние пострадавшего у его постели, допустимы только для высококвалифицированного спе- циалиста, имеющего большой опыт использования конкретного противоядия. Наиболее частая ошибка, связанная с применением антидотов, обусловлена попыткой усилить их эффективность, повышая вводимую дозу. Такой подход возможен лишь при применении некоторых физиоло- гических антагонистов (атропин при отравлениях фосфорорганическими соединениями), но и здесь имеются жесткие ограничения, лимитируемые переносимостью препарата. Например, по-


 

пытка увеличения дозы налоксона при опиатных отравлениях в условиях недостаточного купи- рования признаков гипоксии может закончиться развитием отека легких у больного.

В реальных условиях, как и для многих других этиотропных препаратов, схема примене- ния антидотов предварительно отрабатывается в эксперименте и лишь затем рекомендуется прак- тическому здравоохранению. Поскольку некоторые виды интоксикации встречаются нечасто, по- рой проходит продолжительное время перед тем, как в условиях клиники удается окончательно сформировать оптимальную стратегию использования средства.

Комплексные антидотные рецептуры. В некоторых случаях к разрабатываемым антидо- там предъявляются особо жесткие требования. Так, антидоты боевых отравляющих веществ должны обладать не только высокой эффективностью, но и прекрасной переносимостью, по- скольку препараты выдаются на руки военнослужащим и четкий контроль за правильностью их использования организовать весьма затруднительно.

Один из путей решения поставленной задачи — создание антидотных рецептур. В состав таких рецептур включают препараты-антагонисты действия токсиканта на разные подтипы структур-мишеней, вещества с различными механизмами антагонизма, а иногда и средства кор- рекции неблагоприятных эффектов антагонистов. За счет этого удается значительно снизить дозы препаратов, входящих в рецептуру, повысить терапевтическую широту (переносимость) антидо- та. По такому принципу разрабатываются антидоты ФОБ.

Так, в состав профилактических рецептур входят вещества с биохимическим и физиологи- ческим антагонизмом: холинолитики и обратимые ингибиторы холинэстеразы; в состав антидота само- и взаимопомощи вводят несколько холинолитиков, «прикрывающих» различные типы хо- линорецепторов, и реактиваторы холинэстеразы.

При разработке рецептур исходят из того, что препараты должны быть токсикодинамиче- ски совместимы, иметь близкие токсикокинетические характеристики.



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 283; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.252.140 (0.088 с.)