Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Начальные и конечные вершины. Ранги вершинСодержание книги
Поиск на нашем сайте Вершина графа наз. начальной, если в неё не входит ни 1 ребро, конечной – если из неё не выходит ни одно ребро. Во всяком конечном ациклическом графе есть хотя бы 1 нач. и 1 кон. Вершины. Доказательство. Все пути графа G конечны и имеют длину, не превосходящую вершины, т.к. в ациклическом графе в пути вершины повторяться не могут. Существует максимальный путь, который нельзя удлинить ни в начале, ни в конце. Начало пути – начальная вершина, конец – конечная. Максимальным рангом R(V) ориентированного графа G наз. максимальная из длин путей этого графа с концом в V. Если рассмотреть начальную вершину графа, то её ранг =0. Если через V проходит цикл, то её ранг =+∞. В ациклическом графе все ранги вершин конечны. В ациклическом графе ранг неначальной вершины определяется R(V)=max(R(Vi-1))+1 Бінарне дерево Бінарне дерево – кінцева множина вершин в яких або пуста або складається з кореня і двох неперетинаючихся бінарних піддерев. Бінарне дерево не впорядковане. 91. «И-ИЛИ» дерево Вершина, з якої виходять «И» - зв’язки називається вершиною типу «И», щоб розглянути вершину типа «И» - треба вирішити всі її дочерні вершини. Вершина, що зв’язує альтернативи називається вершина типу «або» і для того щоб розглянути її необхідно вирішити будь-яку з її дочірних вершин. Для аналізу таких графів і пошуку рішень в них можна використовувати алгоритми обхода в глубину і в вширину але вони не є ефективними через велику комбінаторну складність. Для таких графів існують алгоритми евристичного пошуку. У якості оціночної функції вводиться вартість. Вона визначається як сума вартостей його ребер. Ціль алгоритма знайти рішающе дерево мін. вартості. Вартість вершин = вартості отриманого вирішального дерева. Для оцінки вартості вершин будемо використовувати додаткову інфу про дочірні вершини. Для оцінки вартості вершин типу «АБО» На будь-якій стадії пошуку кожна дочірня вершина («АБО») відповідає альтернативному вирішальному дереву. Процес пошуку приймає рішення продовжити пошук для дерева, ціна шляху для якого є мінімальною. Дерево с корнем. Ветви. Пусть в дереве g отлична вершина V0 – эта вершина корень дерева, а дерево – дерево с корнем, в таком дереве можно естественным образом ориентировать ребра. Вершину V’ дерева g можно соединить с корнем V0 при помощи единственно возможной цепи.
Если на ребрах дерева обозначить ориентацию от V’ к V” то такое дерево будет наз. ориентированым. Обычно в ориентированном дереве все ребра имеют направление от корня к концу вершины, однако если определено противоположное направление от конца вершины к корню, то такой граф наз. сетью сборки. В каждую вершину ориентиро - ванного дерева, за искл. корня, входит только одно ребро, все инцидентные корню ребра связывают корень с вершинами, следовательно корень явл. началом ребер. В конечном дереве число вершин на 1-у больше числа ребер. Пусть V-вершина дерева g с корнем V0. В(V)- множество всех вершин, связанных с корнем, цепям проходящими через вершину V.Это множество порождает подграф g(V), кот. наз. ветвью вершины V в дереве с корнем V0. Как подграф дерева, g(V) тоже не имеет циклов. Любые две вершины V’,V” принадлежат В(V), связанные в этой ветви маршрутом, составленным из участков цепей L(V’) и L(V”) от корня V0 до этих вершин. Докажем, что эти участки целиком принадлежат g(V). Это справедливо, т.к. в каждую вершину такого участка ведет цепь из корня V0, являющаяся начальным участком соотв. цепи LV’ и LV” и проходящая через вершину V, т.е. ветвь g(V) является связанной и сама является деревом. Рассмотрим g(V) как дерево с корнем V. Для любой вершины V’ принад ле - жащей g(V), связывающая ее с вершиной V цепь LVV’ является концом цепи LV0V’, связывающей в дереве g эту вершину с корнем V0. Центры деревьев. Теорема. Теорема. Центрами деревьев является вершина максимального типа и только она.Доказательство. Любая цепь l с началом в вершине V0(вершина максимального типа), проходит последовательно по вершинам уменьшающихся типов. Ее ребро V0V1 может привести вершину типа к, либо в вершину меньшего типа. Следующие ребра уже обязательно попадут в вершины меньшего типа. Таким образом, для L цепи l с началом в вершине типа к, имеем: l(L) k и , если вершина макс.типа единственная макс.удаленная от вершины макс.типа в дереве = ее типу к если (к-1).Рассмотрим случай, когда вершина V имеет не макс.тип. Покажем, что она начало более длинной цепи. Построим цепь lVV0, связыв.эту вершину с вершиной макс.типа. Если вершина V0- единственная вершина макс.типа, то она связанна с 2 вершинами типа (к-1). Можно построить цепь lV0V1 длины (к-1), не проходящую через последнее ребро цепи lVV0 и не имеющую с этой цепью общих вершин, иначе был бы цикл. Цепь l, которая явл.l(V2V1)и l(V1V0), если в дереве Д есть вершина V1 и V0 макс.типа, то можно построить связывающую их цепь. Если она проходит через другую вершину макс.типа, ее длина >2. Тогда V0 явл. началом цепи (к-1) с первым ребром V0V3, ведущим в вершину V3 типа (к-1). Эта цепь не имеет с построенной ранее цепью общих вершин, иначе был бы цикл. Длина цепи ≥(к+1).Для любой вершины не макс.типа и удаление (макс)>k. Дерево может иметь либо 1, либо и 2 центра.
|
||
Последнее изменение этой страницы: 2017-02-21; просмотров: 789; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.4.50 (0.005 с.) |