Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Полевые транзисторы с изолированным затвором.Содержание книги
Поиск на нашем сайте
Дальнейшим развитием полевых транзисторов являются транзисторы с изолированным затвором. У них металлический затвор отделен от полупроводникового канала тонким слоем диэлектрика. Иначе эти приборы называют МДП-транзисторы (от слов «металл-диэлектрик-полупроводник»), т.к. диэлектриком обычно служит слой диоксида кремния SiO2.
Основанием МДП-транзистора служит кремниевая пластинка с электропроводностью типа p (рис.11). В ней созданы две области с электропроводностью n+-типа с повышенной проводимостью. Эти области являются истоком и стоком. От них сделаны выводы. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n-типа. Длина канала от истока до стока составляют обычно ед. мкм, а его ширина – сотни микрометров и более, в зависимости от рабочего тока транзистора. Толщина диэлектрического слоя SiO2 0,1¸0,2 мкм. Сверху диэлектрического слоя расположен затвор в виде тонкой металлической пленки. Кристалл МПД-транзистора обычно соединен с истоком, и его jл принимается за нулевой – так же, как и jл истока. Иногда от кристалла бывает сделан отдельный вывод. Прибор с такой структурой называют транзистором с собственным (или встроенным) каналом, и работает он следующим образом. Если при нулевом напряжении затвора приложить между стоком и истоком напряжение, то через канал потечет ток, представляющий собой поток электронов. Через кристалл ток не пойдет, т.к. один из n-p-переходов находится под обратным напряжением. При подаче на затвор напряжения, отрицательного относительно истока, а, следовательно, и относительно кристалла, в канале создается поперечное электрическое поле, под влиянием которого электроны проводимости выталкиваются из канала в области истока и стока и в кристалл. Канал обедняется электронами, сопротивление его увеличивается, и ток стока уменьшается. Чем больше отрицательное напряжение затвора, тем меньше этот ток. Такой режим транзистора называют режимом обеднения.
Если же на затвор подать положительное напряжение, то под действием поля, созданного этим напряжением, из областей истока и стока, а также из кристалла в канал будут приходить электроны: проводимость канала при этом увеличится и ток стока растет. Этот режим называют режимом обогащения. Рассмотренный транзистор с собственным каналом, таким образом, может работать как в режиме обеднения, так и в режиме обогащения. Это наглядно показывают его выходные (стоковые) характеристики, изображенные на рис.12, и характеристики управления на рис.13. Как видно, выходные характеристики МПД-транзистора подобны выходным характеристикам полевого транзистора с управляющим p-n-переходом. Это объясняется тем, что при возрастании uси от нуля сначала действует закон Ома, и ток растет почти пропорционально напряжению, а затем, при некотором uси, канал начинает сужаться, особенно около стока. Т.к. на p-n-переходе между каналом и кристаллом растет обратное напряжение, область этого перехода, обедненная носителями, расширяется, и сопротивление канала увеличивается. Таким образом, Ic испытывает два взаимно противоположных влияния: от увеличения uси ток должен возрастать по закону Ома, но от увеличения сопротивления канала ток уменьшается. В результате ток остается почти постоянным до такого напряжения uси, при котором наступает электрический пробой в кристалле. В том случае, если кристалл имеет электропроводность n-типа, канал должен быть p-типа и полярность напряжений надо изменить на противоположную. Другим типом является транзистор с индуцированным (инверсным) каналом (рис.14). От предыдущего он отличается тем, что канал возникает только при подаче на затвор напряжения определенной полярности. При отсутствии этого напряжения канала нет, между истоком и стоком n+-типа расположен только кристалл p-типа и на одном из p-n+-переходов получается обратное напряжение. В этом состоянии сопротивление между истоком и стоком очень велико, т.е. транзистор заперт. Но если подать на затвор положительное напряжение, то под влиянием поля затвора электроны проводимости будут перемещаться из областей истока и стока и из p-области по направлению к затвору. Когда напряжение затвора превысит некоторое отпирающее, или пороговое значение (ед. В), то в приповерхностном слое концентрация электронов настолько увеличивается, что превысит концентрацию дырок, и в этом случае произойдет т.н. инверсия типа электропроводности, т.е. образуется тонкий канал n-типа и транзистор начнет проводить ток. Чем больше положительное напряжение затвора, тем больше проводимость канала и ток стока. Таким образом, подобный транзистор может работать только в режиме обогащения, что видно из его выходных характеристик (рис.15) и характеристик управления (рис.16). Если подложка n-типа, то получится индуцированный канал p-типа. Параметры МПД-транзисторов аналогичны параметрам полевых транзисторов с n-p-переходом. Транзисторы с изолированным затвором имеют преимущества в отношении температурных, шумовых, радиационных и других свойств, отмеченных для полевых транзисторов с p-n-переходом, и, кроме того, обладают еще рядом достоинств. Сопротивление изоляции затвора у них представляет собой входное сопротивление постоянному току на низких частотах и достигает 1012-1015 Ом. Важно, что входное сопротивление остается большим при любой полярности напряжения затвора. Входная емкость может быть меньше 1 пФ, и предельная частота доходит до сотен МГц. Разработаны мощные (до десятков Вт) транзисторы и изолированным затвором, имеющие крутизну 10 мА/В и больше, и работающие на частотах до сотен МГц. Транзисторы и изолированным затвором могут применяться во всех схемах, рассмотренных выше (ОИ, ОЗ и ОС.) Следует отметить, что изготовление полевых транзисторов по планарно-эпитаксиальной технологии сравнительно несложно и упрощает создание микроэлектронных схем. Особенно просто изготавливаются МПД-транзисторы с индуцированным каналом, т.к. в кристалле надо сделать лишь две области – истока и стока. При работе с МПД-транзисторами следует принимать меры предосторожности для предотвращения пробоя тонкого слоя диэлектрика между затвором и каналом под действием статических электрических зарядов, которые могут возникнуть на изолированном затворе. Необходимо, чтобы при транспортировке и монтаже электроды у транзисторов были замкнуты накоротко. Эти замыкающие проводнички удаляют только по окончании монтажа, когда выводы транзистора уже впаяны в схему. Тиристоры (VS)
Тиристор – это четырехслойный полупроводниковый прибор, обладающий двумя устойчивыми состояниями: состоянием низкой проводимости (VS закрыт) и состоянием высокой проводимости (VS открыт).
Перевод VS из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор. К числу таких воздействий относятся воздействия напряжением (током) или светом (фототиристоры). Тиристоры используются в цепях эл. питания устройств связи и энергетики, различных автоматических управляющих устройствах в качестве регуляторов освещения, устройствах цветомузыки и т.д.
По своей структуре тиристоры отличаются от биполярных транзисторов тем, что у них не три, а четыре (и более) полупроводниковых слоя, в которых проводимость последовательно чередуется. Вследствии этого в тиристоре образуется три и более перехода вместо двух, как у биполярного транзистора. Рассмотрим устройство тиристора (рис. 1). Крайнюю область Р1 называют анодом, крайнюю область N2 – катодом.
Принцип действия. Подадим на тиристор напряжение «+» к аноду, «–» к катоду. При такой полярности включения внешнего напряжения к крайним переходам П1 и П3 приложено прямое напряжение, а к среднему переходу П2 – обратное. Следовательно, переходы П1 и П3 открыты, а П3 – закрыт. Это приводит к тому, что большая часть внешнего напряжения приложена к переходу П2, имеющему очень большое сопротивление, и только незначительная часть этого напряжения приложена к переходам П1 и П3, сопротивление которых намного меньше. При этом VS находится в закрытом состоянии, благодаря большому сопротивлению перехода П2. Для того, чтобы осуществить переключение, т.е. открыть VS, необходимо скомпенсировать потенциальный барьер на границе областей N1 – P2. Рассмотрим, как это происходит. VS, имеющий три p – n – перехода, удобно представить в виде двух биполярных транзисторов p – n – p и n – p – n. Это дает возможность для анализа работы тиристора использовать положения и выводы из теории работы биполярных транзисторов. Как видно из рис.2, оба транзистора работают в активном режиме. На эмиттерные переходы P1N1 и N2P2 подается прямое напряжение, на коллекторный переход P2N1, общий для обоих транзисторов, – обратное напряжение.
Под действием прямых напряжений, приложенных к эмиттерным переходам, происходит инжекция основных носителей заряда из эмиттеров P1 и N2 в соответствующие базы N1 и P2. В транзисторе n – p – n электроны из эмиттера N2 переходят в базу P2, где становятся неосновными носителями. Часть этих электронов рекомбинирует в базе, а остальные переходят на коллектор N1 под действием обратного напряжения коллекторного перехода. В результате этого перехода в области N1 создается избыточный заряд. Аналогичные явления происходят в транзисторе p – n – p. Дырки из эмиттера P1 инжектируют в базу N1, где часть их рекомбинирует с электронами базы, а остальные перебрасываются в коллектор P2, создавая в нем избыточный положительный заряд. Напомним, что за счет обратного напряжения на границе перехода имеется двойной электронный слой, состоящий из нескомпенсированных положительных зарядов в области N1 и отрицательных зарядов в области P2, которые образуют потенциальный барьер. Избыточные электроны в области N1 и дырки в области P2, накапливаясь, создают свое электрическое поле, которое снижает потенциальный барьер на границе перехода P2N1. При повышении внешнего напряжения, приложенного между анодом и катодом, возрастает прямое напряжение на эмиттерных переходах П1 и П3, большее число носителей заряда переходит на коллекторы соответствующих транзисторов. Это приводит к возрастающему накоплению избыточных зарядов основных носителей в областях P2 и N1, что способствует понижению потенциального барьера на переходе П2 вплоть до его полной компенсации. При полной компенсации обратного напряжения на коллекторном переходе он откроется и его сопротивление будет таким же малым, как и у обоих эмиттерных переходов, ток тиристора резко возрастет.
|
||||||||||||||
Последнее изменение этой страницы: 2017-02-19; просмотров: 389; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.162.73 (0.01 с.) |