ТОП 10:

Фотоприемники (общие сведения)



Работа различных полупроводниковых приемников излучения (фоторезисторы, фотодиоды, фототранзисторы, фототиристоры) основана на использовании внутреннего фотоэффекта, который состоит в том, что под действием излучения в полупроводниках происходит генерация пар носителей заряда – электронов и дырок. Эти дополнительные носители увеличивают электрическую проводимость. Такая добавочная проводимость, обусловленная действием фотонов, получила название фотопроводимости. У металлов явление фотопроводимости практически отсутствует, так как у них концентрация электронов проводимости огромна (примерно 1022 см-3) и не может заметно увеличится под действием излучения. В некоторых приборах за счет фотогенерации электронов и дырок возникает ЭДС, которую принято называть фото-ЭДС, и тогда эти приборы работают как источники тока. В результате рекомбинации электронов и дырок в полупроводниках образуются фотоны, и при некоторых условиях полупроводниковые приборы могут работать в качестве источников излучения.

 

Фоторезисторы

Фоторезистор представляет собой полупроводниковый резистор, сопротивление которого изменяется под действием излучения. Принцип устройства фоторезистора поясняется на рис.4.1,а. На диэлектрическую пластинку 1 нанесен тонкий слой полупроводника 2 с контактами 3 по краям. Схема включения фоторезистора приведена на рис.4.1,б. Полярность источника питания не играет роли.

Если облучения нет, то фоторезистор имеет некоторое большое сопротивление RT, называемое темновым. Оно является одним из параметров фоторезистора и составляет 104-107Ом. Соответствующий ток через фоторезистор называется темновым током. При действии излучения с достаточной энергией фотонов на фоторезистор в нем происходит генерация пар подвижных носителей заряда (электронов и дырок) и его сопротивление уменьшается.

Для фоторезисторов применяются различные полупроводники, имеющие нужные свойства. Так, например, сернистый свинец наиболее чувствителен к инфракрасным, а сернистый кадмий – к видимым лучам. Фоторезисторы характеризуются удельной чувствительностью, т.е. интегральной чувствительностью (это – отношение фототока к вызвавшему его потоку белого (немонохроматического) света), отнесенной к 1В приложенного напряжения: Sуд= I / (ФU) (4.1)

 

где Ф – световой поток.

Обычно удельная чувствительность составляет несколько сотен или тысяч микроампер на вольт-люмен.

Фоторезисторы имеют линейную вольтамперную и нелинейную энергетическую характеристику (рис.4.2). К параметрам фоторезисторов кроме темнового сопротивления и удельной чувствительности следует еще отнести максимальное допустимое рабочее напряжение (до 600В), кратность изменения сопротивления (может быть до 500), температурный коэффициент фототока ТКФ=ΔI/(IΔT). Значительная зависимость сопротивления от температуры, характерная для полупроводников, является недостатком фоторезисторов. Существенным недостатком надо считать также их большую инерционность, объясняющуюся довольно большим временем рекомбинации электронов и дырок после прекращения облучения. Практически фоторезисторы применяются лишь на частотах не выше нескольких сотен герц или единиц килогерц. Собственные шумы фоторезисторов значительны. Тем не менее, фоторезисторы широко применяются в различных схемах автоматики и во многих других устройствах.

 

Фотодиоды

Фотодиоды представляют собой полупроводниковые диоды, в которых используется внутренний фотоэффект. Световой поток управляет обратным током фотодиодов. Под воздействием света на электронно-дырочный переход и прилегающие к нему области происходит генерация пар носителей заряда (нарисовать структуру), проводимость диода возрастает и обратный ток увеличивается. Такой режим работы называется фотодиодным (рис.4.3). Вольтамперные характеристики I=f(U) при Ф=const для фотодиодного режима (рис.4.4) напоминают выходные характеристики биполярного транзистора, включенного по схеме с общей базой. Если светового потока нет, то через фотодиод протекает обычный начальный обратный ток I0, который называют темновым. Под действием светового потока ток в диоде возрастает и характеристики располагаются выше. Чем больше световой поток, тем больше ток. Но при некотором напряжении возникает электрический пробой (участки резкого увеличения тока на характеристике). Энергетические характеристики фотодиода I=f(Ф) при U=const линейны и мало зависят от напряжения (рис.4.5).

 

 

Интегральная чувствительность фотодиода обычно составляет десятки мА на люмен. Она зависит от длины волны световых лучей и имеет максимум при некоторой длине волны, различной для разных полупроводников. Инерционность фотодиодов невелика. Они могут работать на частотах до нескольких сотен МГц. А у фотодиодов со структурой p-i-n граничные частоты повышаются до десятков ГГц. Рабочее напряжение у фотодиодов обычно 10-30 В. Темновой ток не превышает 20 мкА для германиевых приборов и 2 мкА – для кремниевых. Ток при освещении составляет сотни мкА. В последнее время разработаны фотодиоды на сложных полупроводниках, наиболее чувствительных к инфракрасному излучению. Большинство фотодиодов изготовляется по планарной технологии (рис.4.6).

Имеется несколько разновидностей фотодиодов. У лавинных фотодиодов происходит лавинное размножение носителей в p-n-переходе и за счет этого в десятки раз возрастает чувствительность. В фотодиодах с барьером Шотки имеется контакт полупроводника с металлом. Это диоды с повышенным быстродействием. Все фотодиоды могут работать и как генераторы ЭДС, о чем пойдет речь далее.

Фотоэлементы

Полупроводниковые фотоэлементы, иначе называемые вентильными или фотогальваническими, служат для преобразования энергии излучения в электрическую энергию. По существу они представляют собой фотодиоды, работающие без источника внешнего напряжения и создающие собственную ЭДС под действием излучения.

Фотоны, воздействуя на p-n-переход и прилегающие к нему области, вызывают генерацию пар носителей заряда. Возникшие в p- и n-областях дырки и электроны диффундируют к переходу, и если они не успели рекомбинировать, то попадают под действие внутреннего электрического поля, имеющегося в переходе. Это поле также действует и на носителей заряда, возникших в самом переходе. Поле разделяет электроны и дырки. Для неосновных носителей, например для электронов, возникших в p-области, поле перехода является ускоряющим. Оно перебрасывает электроны в n-область. Аналогично дырки перебрасываются полем из n-области в p-область. А для основных носителей поле перехода является тормозящим, и эти носители остаются в своей области, т.е. дырки остаются в p-области, а электроны – в n-области (рис.4.7).

В результате такого процесса в n- и p-областях накапливаются избыточные основные носители, т.е. создаются соответственно заряды электронов и дырок и возникает разность потенциалов, которую называют фото-ЭДСф). С увеличением светового потока фото-ЭДС растет по нелинейному закону (рис.4.8). Значение ЭДС может достигать нескольких десятых долей вольта. При включении полупроводникового фотоэлемента на нагрузку (рис.4.9) возникает фототок Iфф/(Rн+Ri), где Ri – внутреннее сопротивление самого фотоэлемента.

 

 

В настоящее время наиболее широкое распространение получили кремниевые фотоэлементы, используемые в качестве солнечных преобразователей. Они преобразуют энергию солнечных лучей в электрическую, и ЭДС их достигает уже более 0,5В. Из таких элементов путем последовательного и параллельного соединения создаются солнечные батареи, которые обладают сравнительно высоким КПД (до 20%) и могут развивать мощность до нескольких кВт. Солнечные батареи из кремниевых фотоэлементов – это основные источники питания на искусственных спутниках Земли, космических кораблях, автоматических метеостанциях и др.

 

Фототранзисторы

 

Значительно выше по сравнению с фотодиодами интегральная чувствительность у фототранзисторов. Биполярный фототранзистор представляет собой обычный транзистор, но в корпусе его сделано прозрачное «окно», через которое световой поток может воздействовать на область базы. Схема включения биполярного фототранзистора типа p-n-p со «свободной», т.е. никуда не включенной, базой, приведена на рис.4.10. Обычно на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Фотоны вызывают в базе генерацию пар носителей заряда – электронов и дырок. Они диффундируют к коллекторному переходу, в котором происходит их разделение так же, как и в фотодиоде. Дырки под действием поля коллекторного перехода идут из базы в коллектор и увеличивают ток коллектора. А электроны остаются в базе и повышают прямое напряжение эмиттерного перехода, что усиливает инжекцию дырок в этом переходе. За счет этого дополнительно увеличивается ток коллектора. В транзисторе типа n-p-n все происходит аналогично.

Интегральная чувствительность у фототранзистора в десятки раз больше, чем у фотодиода, и может достигать сотен мА на люмен.

Выходные характеристики фототранзистора показаны на рис.4.11. Они аналогичны выходным характеристикам для включения транзистора по схеме с общим эмиттером, но различные кривые соответствуют различным значениям светового потока, а не тока базы.

Параметры фототранзистора – интегральная чувствительность, рабочее напряжение (10-15 В), темновой ток (до десятков мА), максимальная допустимая рассеиваемая мощность (до десятков мВт), граничная частота. Фототранзисторы, изготовленные сплавным методом, имеют граничные частоты до нескольких кГц, а изготовленные диффузионным методом (планарные) могут работать на частотах до нескольких МГц. Недостаток фототранзисторов – сравнительно высокий уровень собственных шумов.

Частотные свойства ртанзистора обуславливаются временем рекомбинации неосновных носителей заряда в базе (временем восстановления их малой концентрации) при исчезновении светового потока. В реальных схемах вывод базы и эмиттера могут быть соеденины резистором 20-100 кОм. Тогда при исчезновении светового потока неосновные носители из базы могут дополнительно уходить в эмиттер через резистор, что уменьшит время восстановления их концентрации и улучшит частотные свойства оптотранзистора.

Фототиристоры

Тиристорные четырехслойные структуры p-n-p-n (рис.4.12) могут управляться световым потоком, подобно тому, как триодные тиристоры управляются напряжением, подаваемым на один из эмиттерных переходов. При действии света на область базы p1 в этой области генерируются электроны и дырки, которые диффундируют к p-n-переходам. Электроны, попадая в область перехода П2, находящегося под обратным напряжением, уменьшают его сопротивление. За счет этого происходит перераспределение напряжения, приложенного к тиристору: напряжение на переходе П2 несколько уменьшается, а напряжение на переходах П1 и П3 несколько увеличиваются. Но тогда усиливается инжекция в переходах П1 и П3, к переходу П2 приходят инжектированные носители, его сопротивление снова уменьшается и происходит дополнительное перераспределение напряжения, еще больше усиливается инжекция в переходах П1 и П3, ток лавинообразно нарастает (см. штриховые линии на рис.4.13), т.е. тиристор отпирается.

Чем больше световой поток, действующий на тиристор, тем при меньшем напряжении включается тиристор. Это наглядно показывают вольтамперные характеристики фототиристора, приведенные на рис.4.13. После включения на тиристоре устанавливается небольшое напряжение и почти все напряжение источника Е падает на нагрузке.

Фототиристоры могут успешно применяться в различных автоматических устройствах в качестве бесконтактных ключей для включения значительных напряжений и мощностей. Важные достоинства фототиристоров – малое потребление мощности во включенном состоянии, малые габариты, отсутствие искрения, малое (доли секунды) время включения.

Оптроны

 

Оптрон – это полупроводниковый прибор, в котором конструктивно объединены источник и приемник излучения, имеющие между собой оптическую связь. В источнике излучения электрические сигналы преобразуются в световые, которые воздействуют на фотоприемник и создают в нем снова электрические сигналы. Если оптрон имеет только один излучатель и один приемник излучения, то его называют оптопарой или элементарным оптроном. Микросхема, состоящая из одной или нескольких оптопар с дополнительными согласующими и усилительными устройствами, называется оптоэлектронной интегральной микросхемой. На входе и выходе оптрона всегда имеются электрические сигналы, а связь входа с выходом осуществляется световыми сигналами. Цепь излучатель является управляющей, а цепь фотоприемника – управляемой.

Конструктивно в оптронах излучатель и приемник излучения помещаются в корпус и заливаются оптически прозрачным клеем (рис.4.14).

Важнейшие достоинства оптронов:

1. Отсутствие электрической связи между входом и выходом и обратной связи между фотоприемником и излучателем.

2. Широкая полоса частот пропускаемых колебаний, возможность передачи сигналов с частотой от 0 до 1014 Гц.

3. Возможность управления выходными сигналами путем воздействия на оптическую часть.

4. Высокая помехозащищенность оптического канала, т.е. его невосприимчивость к воздействию внешних электромагнитных полей.

5. Возможность совмещения в РЭА с другими полупроводниковыми и микроэлектронными приборами.

Недостатки оптронов следующие:

1. Относительно большая потребляемая мощность, из-за того, что дважды происходит преобразование энергии, причем КПД этих преобразований невысок.

2. Невысокая температурная стабильность и радиационная стойкость.

3. Заметное «старение», т.е. ухудшение параметров с течением времени.

4. Сравнительно высокий уровень собственных шумов.

5. Необходимость применения гибридной технологии вместо более удобной и совершенной планарной технологии (в одном приборе объединены источник и приемник излучения, сделанные из разных полупроводников).

Рассмотрим различные типы оптопар, отличающиеся друг от друга фотоприемниками.

Резисторные оптопары имеют в качестве излучателя сверхминиатюрную лампочку накаливания или светодиод, дающий видимое или инфракрасное излучение. Приемником излучения является фоторезистор из селенида кадмия или сульфида кадмия для видимого излучения, а для инфракрасного – из селенида или сульфида свинца. Фоторезистор может работать как на постоянном, так и на переменном токе. Для хорошей работы оптопары необходимо согласование излучателя и фоторезистора по спектральным характеристикам. Схема включения резисторной оптопары изображена на рис.4.15.

Диодные оптопары (рис.4.16,а) имеют обычно кремниевый фотодиод и инфракрасный арсенидо-галлиевый светодиод. Фотодиод может работать в фотогенераторном режиме, создавая фото-ЭДС до 0,8В, или в фотодиодном режиме. Диоды изготовляют по планарно-эпитаксиальной технологии. Для повышения быстродействия применяют фотодиоды типа p-i-n.

Применение диодных оптопар весьма разнообразно. Например, на основе диодных оптопар создаются импульсные трансформаторы, не имеющие обмоток. Оптопары используются для передачи сигналов между блоками сложной РЭА, для управления работой различных микросхем, особенно микросхем на МДП-транзисторах, у которых входной ток очень мал. Разновидность диодных оптопар – оптопары, в которых фотоприемником служит фотоварикап (рис.4.16,б).

Транзисторные оптопары (рис.4.16,в) имеют обычно в качестве излучателя арсенидно-галлиевый светодиод, а приемника излучения – биполярный кремниевый фототранзистор типа n-p-n. Основные параметры входной цепи таких оптопар аналогичны параметрам диодных оптопар. Оптопары этого типа работают главным образом в ключевом режиме и применяются в коммутаторных схемах, устройствах связи различных датчиков с измерительными блоками, в качестве реле и во многих других случаях.

Тиристорные оптопары имеют в качестве фотоприемника кремниевый фототиристор (рис.4.16,г) и применяются в ключевых режимах. Основная область использования – схемы для формирования мощных импульсов, управления мощными тиристорами, управления и коммутации различных устройств с мощными нагрузками. Параметры тиристорных оптопар – входные и выходные токи и напряжения, соответствующие включению, рабочему режиму и максимальным допустимым режимам, а также время включения и выключения, параметры изоляции между входной и выходной цепями.

Оптоэлектронные интегральные микросхемы (ОЭ ИМС) имеют оптическую связь между отдельными узлами или компонентами. В этих микросхемах, изготовляемых на основе диодных, транзисторных, тиристорных оптопар, кроме излучателей и фотоприемников содержатся еще устройства для обработки сигналов, полученных от фотоприемника. Особенность ОЭ ИМС – однонаправленная передача сигнала и отсутствие обратной связи.

Различные ОЭ ИМС используются главным образом в качестве переключателей логических и аналоговых сигналов, реле и схем цифро-буквенной индикации.

Интегральные микросхемы

ИМСэто полупроводниковый прибор высокой степени интеграции. На одном кристале выполнено множество простейших полупроводниковых прборов (имеющих не более 3-х р-n переходов.

Параметры ИМС:

степень интеграции = ln (N), где N - кол-во VТ в ИМС

Плотность упаковки = N/S или N/V

минимильный топологический размер – минимальный размер области с одной и той-же структурой (типом проводимости)

 

ИМС могут быть аналоговыми (для обработки непрерывно изменяемого сиграла, например ОУ); логическими (для обработки логических (дискретных) сигналов 1,0)

 

Класификация по логическому признаку:

1. Полупроводниковые МС. Все элементы, входящие в МС выполнены в одном объеме кристалла полупроводника.

2. Гибридные МС – изолированное основание, на которое устанавливаются компоненты. (по технологии близки к технологии изготовления печатных плат)

Изготовление. Основа ИМС – пластина монокристалла кремния (до 15 мм в диаметре). Поверхность пластины тщательно обрабатывается. При изготовлнении МС одновременно изготавливают много МС, затем выбраковывают МС с деффектами, пластину разламывают на мелкие МС и приклеивают к керамической подложке.


РАЗДЕЛ 3. УСИЛИТЕЛИ







Последнее изменение этой страницы: 2017-02-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.231.21.160 (0.012 с.)