Процесс генерации пар зарядов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Процесс генерации пар зарядов.



 

Вследствие теплового возбуждения при Т>0°К какая – либо валентная связь между двумя атомами может оказаться нарушенной. Один из электронов, участвующих в парноэлектронной связи, может получить энергию, превосходящую по величине энергию ЕВ, запасаемую при ковалентной связи, и стать свободным электроном. На плоской схеме кристаллической решетки (рис.2) этот процесс можно условно изобразить в виде разорванной валентной связи (две точки между атомными остатками Ge) и электрона, свободно перемещающегося в пространстве между узлами кристаллической решетки. На месте ушедшего электрона остается незаполненная валентная связь и нескомпенсированный положительный заряд, равный по величине заряду электрона. Такое состояние принято называть дыркой. Описанный процесс на зонной диаграмме можно показать как переход электрона в ЗП из ВЗ, где освобождается одно из энергетических состояний – появляется дырка (рис.2б). Таким образом, в результате такого перехода электрона образуется обязательно пара зарядов: отрицательный заряд – электрон в ЗП и положительный заряд – дырка в ВЗ. Отсюда и наименование процесса – генерация пар зарядов. Оба образовавшихся заряда – подвижные. Свободный электрон хаотически перемещается между узлами кристаллической решетки подобно свободным электронам в металле.

На зонной энергетической диаграмме это движение, сопровождаемое в общем случае взаимодействиями и изменением энергии электрона, можно представить как хаотическое перемещение на свободные энергетические уровни, вниз или вверх в зависимости от уменьшения или увеличения энергии в процессе движения.

Движение дырки в пространстве обусловлено конечной вероятностью замещения разорванной валентной связи в результате хаотических туннельных переходов электронов соседних атомов.

Как это видно из рис.3, перемещение электронов последовательно от атома В к атому Б, затем к атому А и т.д., эквивалентно движению дырки в обратном направлении. На энергетической диаграмме, этот процесс как последовательное замещение электронами освобождающихся энергетических уровней в ВЗ и соответствующее противоположное перемещение дырки.

Итак, в результате генерации пар зарядов появляются подвижные частицы, способные участвовать в переносе электрических зарядов, т.е. обусловить электропроводность полупроводника.

В процессе хаотического движения свободный электрон может заместить одну из нарушенных валентных связей, т.е. возвратиться из ЗП в ВЗ. Произойдет объединение – рекомбинация свободного электрона и дырки. Пара подвижных зарядов исчезнет. При неизменной температуре число рекомбинации в единицу времени равно числу генераций пар зарядов, причем образовавшиеся подвижные заряды существуют конечный интервал времени t. Поэтому концентрации Ni – электронов и Pi – дырок в данном полупроводнике при T = const остаются неизменными (равновесные концентрации)

 

Итак, при комнатной температуре в полупроводнике имеется небольшое число носителей заряда: отрицательно заряженных свободных электронов и положительно заряженных дырок. Благодаря этому полупроводник обладает способностью проводить электрический ток.

Если к полупроводнику приложить напряжение (рис.4), то под действием электрического поля свободные электроны, совершающие хаотическое тепловое движение в междуатомном пространстве, начнут смещаться (дрейфовать) в сторону положительного электрода. В результате этого в цепи будет протекать электрический ток. Это – обычный электронный ток, такой же, как и в металлических проводниках.

Но в отличие от проводников, в полупроводнике будет протекать еще ток, возникающий в результате перехода валентных электронов с орбиты ковалентной связи одной пары атомов, на орбиту с дыркой ковалентной связи соседней пары атомов, расположенной в направлении положительного электрода. Скорость перемещения валентных электронов примерно в 2 -3 раза меньше скорости перемещения (дрейфа) свободных электронов. Кроме того, валентные электроны обладают меньшей энергией, чем свободные. Для того чтобы различать эти два тока в полупроводнике, ток, образованный перемещением валентных электронов, принято называть дырочным током, т.к. положительно заряженные дырки перемещаются с той же скоростью в противоположном направлении.

 

Таким образом, в полупроводнике под действием электрического поля, созданного источником, протекает, так называемый дрейфовый ток, содержащий электронную и дырочную составляющие.

Плотность дрейфового тока в полупроводнике определяется концентрацией носителей заряда, их подвижностью и напряженностью электрического поля:

Примеси в полупроводниках.

 

На процесс образования свободных электронов и дырок в полупроводнике большое влияние оказывают нарушения правильной структуры кристаллической решетки, а также наличие примесей. Атомы примесей обычно замещают в узлах решетки атомы основного вещества, образуя дефекты замещения. Примесные атомы могут попасть так же в междоузлия и образовать дефекты внедрения.

В полупроводники, используемые для изготовления полупроводниковых приборов, предварительно очищенные от случайных примесей, вводят специальные примеси, обеспечивающие преимущественную концентрацию либо свободных электронов, либо дырок. Для получения преимущественной концентрации электронов в качестве примесей используются вещества с валентностью, превосходящей валентность основного полупроводника. Такие примеси называются донорными. Так, для Ge и Si, валентность которых S=4, в качестве донорных примесей используются пятивалентные P или As. Преимущественная концентрация дырок получается за счет примесей с меньшей валентностью – акцепторных примесей. Такими примесями могут служить трехвалентные бор, Al, In и т.д.

Электронный полупроводник (n-типа)

 

На рис.5,а показана часть кристаллической решетки Ge вблизи узла, замещенного примесным атомом Р. Четыре валентных электрона Р образуют с валентными электронами четырех соседних атомов Ge парноэлектронные ковалентные связи. Поскольку ковалентная связь насыщенная, пятый валентный электрон не участвует ни в одной из четырех связей. Он связан с атомом примеси лишь кулоновскими силами и поэтому его энергетическое состояние более высокое, а энергия связи с атомом значительно меньше квантово – механической энергии связи для остальных четырех электронов.

Из пространственно – энергетической диаграммы (рис.5,б) видно, что периодическая j-ая функция вблизи атома примеси искажается и пятый валентный электрон, а значит, и атом примеси занимают отдельный локальный энергетический уровень в ЗЗ вблизи дна ЗП. Такое расположение в ЗЗ пятого электрона возможно, потому что он не является свободным электроном, а находится в j-ой яме вблизи своего атома.

Естественно, что для отделения этого электрона от атома – перевода его в ЗП – требуется значительно меньше энергии, нежели для перемещения любого валентного электрона из ВЗ в ЗП ∆Eg < ∆Eз.

Энергия ∆Ед , требуемая для этого, называется энергией ионизации. При ионизации атома донорной примеси, называемого донором, в зоне проводимости появляется свободный электрон, а сам атом примеси превращается в положительно заряженный ион. В отличие от процесса перехода валентности электрона из валентной зоны в зону проводимости при генерации пар зарядов здесь не появляется дырка, т.к все валентные связи вблизи донорного атома замещены. Таким образом, положительный ион примеси в отличие от дырки – заряд неподвижный, и, следовательно, в процессе ионизации доноров образуются подвижные заряды лишь одного знака – свободные электроны.

Обычно концентрация атомов примеси в полупроводниках составляет 10-6: 10-3 %. Поэтому атомы примеси отстоят друг от друга на расстояния, измеряемые, по меньшей мере, сотнями периодов решётки. Волновые ф-ции этих атомов можно считать неперекрывающимися, а их энергетический уровень не расщепляется в энергетическую зону, а образует единый для всех атомов локальный энергитический уровень, располагающийся на зонной диаграмме вблизи дна зоны проводимости (рис.5,в).

Вывод: В полупроводниках с донорными примесями при Т>0°К образуется преимущественная концентрация электронов. Такие полупроводники называются электронными полупроводниками или n-полупроводниками.

Дырочный полупроводник (р-типа).

 

В случае добавления в полупроводник акцепторной примеси одна из валентных связей вблизи атома- акцептора остаётся незаполненной (рис.6,а).

Рис. 6,а. Примесной атом In в кристалле Ge.

 

Такое состояние нельзя назвать дыркой, т.к. атом акцептора электрически нейтрален. Потенциальная функция вблизи атомов примеси искажается (рис.6,б).

Рис. 6,б. Положение примесного атома In на потенциальной диаграмме.

  Рис. 6,в. Энергетическая диаграмма р-полупроводника.  

 

У края потенциальной ямы акцептора энергитический уровень, лежащий несколько выше потолка валентной зоны, остаётся незаполненным.

В результате теплового возбуждения один из валентных электронов соседних атомов может нарушать валентную связь и заместить свободный энергитический уровень (заполнить валентную связь) вблизи атома акцептора. При этом четвёртый электрон связан с акцептором лишь квантомеханическими силами, т.е. его энергетическое состояние окажется выше энергии остальных трёх электронов на величину, примерно равную классической кулоновской энергии. В результате такого перехода вблизи соседнего атома, которому ранее принадлежал рассмотренный электрон, образуется дырка, а атом акцептора превратится в неподвижный отрицательно заряженный ион. Следовательно, в процессе ионизации акцепторов образуется преимущественная концентрация дырок – образуются подвижные носители лишь одного знака. Такие полупроводники называются дырочными или р-полупроводниками. Как и в случае донорных примесей, положение акцепторов в зонной диаграмме характеризуется единым локальным энергетическим уровнем, расположенным вблизи потолка валентной зоны (рис.6,в).

Выводы:

В полупроводнике, в отличие от металлического проводника, ток образуется не только за счет направленного движения (дрейфа) отрицательно заряженных свободных электронов, но и за счет дрейфа положительно заряженных дырок.

  1. Электропроводность собственного (беспримесного) полупроводника очень мала, т.к. при комнатной температуре в нем мало носителей заряда – свободных электронов и дырок. Из–за этого собственный полупроводник имеет ограниченное применение в полупроводниковой технике.

 


Типы рекомбинации

В зависимости от механизма различают три вида рекомбинации: межзонную рекомбинацию, рекомбинацию через локальные центры и поверхностную рекомбинацию.

Межзонная рекомбинация осуществляется при переходе свободного электрона из зоны проводимости в валентную зону, что сопровождается уничтожением свободного электрона и дырки, на месте которой появляется связанный электрон. Этот процесс совершается при соблюдении законов сохранения энергии и импульса. Так как энергия электрона в валентной зоне меньше энергии электрона в зоне проводимости, то процесс межзонной рекомбинации должен сопровождаться выделением энергии

ΔE ≈ Eпр – EB (49)

В зависимости от того, на что расходуется энергия, различают следующие виды межзонной рекомбинации:

Излучательную, при которой энергия ΔЕ излучается в виде кванта света (фотона);

безизлучательную, при которой энергия ΔЕ передается кристаллической решетке, то есть расходуется на образование фононов.

При излучательной межзонной рекомбинации в соответствии с законом сохранения энергии должен испускаться фотон с энергией

hυ ≈ Eпр – EB (50)

Вместе с тем из закона сохранения импульса следует, что

hυ/С = Pпр –PB (51)

Поскольку импульс фотона hυ/С ничтожно мал по сравнению с импульсом электрона, то последнее равенство можно переписать так

Pпр –PB ≈ 0 (52)

Рассматривая – PB как импульс свободной дырки, приходим к выводу, что при межзонной излучательной рекомбинации возможны лишь такие переходы, при которох электрон зоны проводимости встречается с дыркой валентной зоны, имеющей равный по величине и противоположный по направлению импульс.

Несложно показать, что скорость межзонной излучательной рекомбинации увеличивается по мере уменьшения ширины запрещенной зоны полупроводника и увеличение его температуры. Поэтому данный вид рекомбинации может иметь единственное значение лишь для полупроводников с узкой запрещенной зоной и при достаточно высоких температурах.

При безизлучательной (фононной) рекомбинации избыточная энергия выделяется в виде фононов. Оценки показывают, что максимальная энергия фононов в кристаллах не превышает 0,1 эВ. Это означает, что при рекомбинации через запрещенную зону шириной порядка 1 эВ должно произойти одновременно испускание большого числа фононов. Следовательно, межзонная безизлучательная рекомбинация через относительно широкую запрещенную зону должна быть многофононной. Известно, что вероятность многофононных процессов быстро падает с увеличением числа фононов, участвующих в процессе. Это означает, что в полупроводниках с широкой запрещенной зоной межзонная фононная рекомбинация является также маловероятной.

Опыт, однако, показывает, что с увеличением ширины запрещенной зоны безизлучательная рекомбинация все более преобладает над излучательной. Это противоречие объясняется тем, что по мере увеличения ширины запрещенной зоны более вероятными становятся не прямые переходы через нее, а переходы через локальные уровни, расположенные в запрещенной зоне.

Рекомбинация через локальные уровни (центры). Как мы выяснили раньше, наличие дефектов и примесей в полупроводнике приводит к появлению в его энергетической диаграмме локальных энергетических уровней, расположенных в запрещенной зоне. Рассмотрим, какую роль они играют в процессе рекомбинации свободных носителей зарядов.

Пусть в запрещенной зоне донорного полупроводника, имеющего значительную концентрацию электронов зоны проводимости, располагается свободный локальный уровень Ел (рис. 8а), наличие которого обусловлено присутствием примесного атома или дефекта решетки. В этом случае рекомбинация проходит в два этапа.

Первым этапом является захват электрона зоны проводимости указанным примесным атомом ёёёёёё (или, как горят, захват электрона проводимости локальным уровнем Ел, как показано стрелкой 1 на рис. 8а). Дальнейшее поведении захваченного электрона может быть двояким. Электрон может перейти в валентную зону (стрелка 2) на свободный уровень, что эквивалентно захвату на локальный уровень дырки и ее рекомбинации с электроном. Возможен и показанный стрелкой 3 обратный тепловой переброс электрона в зону проводимости. Этомт процесс препятствует рекомбинации электрона и дырки. Таким образом, интенсивность процесса рекомбинации определяется соотношением вероятностей процессов, указанных стрелками 2 и 3.

Если локальные уровни располагаются близко к дну зоны проводимости или к потолку валентной зоны (рис. 8б), то есть являются мелкими, то вероятность протекания через них рекомбинации так же мала, как и вероятность межзонной рекомбинации. Поэтому наличие мелких локальных уровней приводит лишь к энергичному обмену электронами между ними и зоной проводимости (или валентной зоной) и не дает вклада в процесс рекомбинации. Дефекты или примеси, приводящие к появлению таких локальных уровней, называют ловушками захвата или центрами прилипания.

Если же локальный уровень глубокий, то вероятность обратного переброса (например, электрона в зону проводимости) незначительна, преобладает процесс захвата дырки, то есть происходит интенсивный процесс рекомбинации.

Дефекты или примеси, приводящие к появлению глубоких локальных уровней, на которых протекает процесс рекомбинации свободных электронов и дырок, называют рекомбинационными ловушками или центрами рекомбинации.

Высокая интенсивность процесса рекомбинации на рекомбинационных ловушках объясняется тем, что при этом механизме избыточная энергия передается кристаллической решетке в два этапа (двумя примерно равными порциями), то есть на каждом этапе в реакции участвует меньшее число фононов, чем при межзонной рекомбинации. Немаловажное значение имеет также тот факт, что вероятность встречи дырки с неподвижным электроном, локализованным на дефекте, значительно выше вероятности встречи её с подвижным электроном.

У примесных акцепторных полупроводников, имеющих значительную концентрацию дырок в валентной зоне, первым этапом рекомбинации является переход дырки из валентной зоны на локальный рекомбинационный уровень, а вторым этапом – захват электрона зоны проводимости и его рекомбинация с дыркой. Обратный тепловой переброс дырки в валентную зону препятствует процессу рекомбинации.

Отметим, что интенсивность протекания рекомбинации через рекомбинационные ловушки зависит от степени легирования полупроводника. В собственном полупроводнике она минимальна и увеличивается как по мере добавления донорных, так и по мере добавления акцепторных примесей.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 317; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.20.56 (0.035 с.)