Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Физика атома, атомного ядра и элементарных частиц↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Квантовая природа излучения. Тепловое излучение и его характеристики. Законы Кирхгофа. Законы Стефана-Больцмана и смещения Вина. Формулы Рэлея-Джинса и Планка. Внешний фотоэффект. Уравнение Эйнштейна для внешнего фотоэффекта. Масса и импульс фотона. Давление света. Эффект Комптона. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения. Физические модели атомов. Модели атома Томсона и Резерфорда. Линейчатый спектр атома водорода. Эмпирические закономерности в атомных спектрах. Формула Бальмера. Теория атома водорода по Бору. Постулаты Бора. Теория водородоподобного атома. Квантовая природа вещества. Элементы квантовой механики. Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля. Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенности Гейзенберга. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять. Уравнение Шредингера. Квантовая частица в одномерной потенциальной яме. Одномерный потенциальный порог и барьер. Линейный гармонический осциллятор в квантовой механике. Физика атомов и молекул. Элементы современной физики атомов и молекул. Стационарное уравнение Шредингера для атома водорода. Волновые функции и квантовые числа. Правила отбора для квантовых переходов. Опыт Штерна и Герлаха. Эффект Зеемана. Принцип Паули. Молекулярные спектры. Оптические квантовые генераторы Спонтанное и индуцированное излучение. Инверсное заселение уровней активной среды. Основные компоненты лазера. Условие усиления и генерации света. Особенности лазерного излучения. Основные типы лазеров и их применение. Физика атомного ядра и элементарных частиц. Строение и свойства атомных ядер. Состав ядра. Изотопы. Масса и энергия связи в ядре. Радиоактивность. Ядерные реакции. Явление радиоактивности. Закон радиоактивного распада. Период полураспада. Понятие о ядерных реакциях. Законы сохранения в ядерных реакциях. Современная физическая картина мира. Иерархия строения материи. Эволюция Вселенной. Физическая картина мира как философская категория.
ПРИМЕРЫ ОФОРМЛЕНИЯ КОНТРОЛЬНЫХ РАБОТ
ВАРИАНТ 1 Задача №1 В подвешенный на нити длиной м деревянный шар массой кг попадает горизонтально летящая пуля массой г. С какой скоростью летела пуля, если нить с шаром и застрявшей в ней пулей отклонилась от вертикали на угол ? Размером шара пренебречь. Удар пули считать прямым центральным.
столкновения как движение материальной точки с массой .
Решение: Запишем закон сохранения импульса для системы тел и : , где – общая скорость шара и пули после неупругого удара. В проекции на ось x имеем: . (1) Уравнение (1) позволяет выразить искомую величину через , которая в свою очередь может быть найдена на основании закона сохранения энергии в применении к системе после ее формирования, т.е. после неупругого столкновения. Итак, из уравнения (1) имеем: (2) Запишем закон сохранения энергии для системы тел после неупругого соударения (полная механическая энергия остается величиной постоянной): . Величина может быть найдена из геометрических соображений: . (3) Подставляя (3) в (2), получаем . Проверка размерности: м/с. Выполняем расчет: (м/с). Ответ: м/с. Задача №2
Смесь водорода и азота общей массой г при температуре T = 600 К и давлении p = 2,46 МПа занимает объем V = 30 л. Определить массу m 1 водорода и массу m 2 азота.
Решение: Для определения парциального давления запишем уравнение Менделеева – Клапейрона для каждого компонента: , (2) , (3) где индексом “1” отмечены характеристики, относящиеся к водороду, а индексом “2” – к азоту. Выразим и из уравнений (2) и (3) и подставим в закон Дальтона (1): ; (4) при этом . (5) Из (4) и (5) следует . (6) Из (6) получаем . (7) И далее находим массу азота: . Проверка размерности: . Расчет: (кг) (кг) Ответ: = 0,01 кг, = 0,28 кг.
Задача №3
Две –частицы, находясь первоначально достаточно далеко друг от друга, движутся по одной прямой навстречу одна другой со скоростями и 2 соответственно. На какое наименьшее расстояние они могут сблизиться?
противоположны по направлению и равны по модулю . В подобной ситуации (точнее, в этой системе отсчета) частицы в момент наибольшего сближения останавливаются и при этом их кинетическая энергия полностью переходит в потенциальную энергию электростатического взаимодействия.
Решение: На основании закона сохранения энергии . Отсюда , где – электрическая постоянная. Проверка размерности: . Ответ: .
Задача №4
Тонкий провод в виде кольца массой г свободно подвешен на неупругой нити в однородном магнитном поле. По кольцу течет ток силой i =6 А. Период Т малых крутильных колебаний относительно вертикальной оси равен 2,2 с. Найти индукцию В магнитного поля.
Если же вектор магнитного момента не совпадает с вектором , то на контур действует возвращающий механический момент под действием которого контур будет совершать колебательные движения. (Здесь S – площадь, ограниченная контуром). Решение: Запишем уравнение движения кругового контура для случая малых колебаний: , (1) где – момент инерции кольца относительности оси, лежащей в плоскости кольца и проходящей через его центр; – угловое ускорение, N - возвращающий механический момент, равный (при малых углах ); . Тогда уравнение (1) примет вид: ; ; Таким образом, мы получаем уравнение гармонических колебаний кольца для которых циклическая частота . Учитывая связь периода колебаний и частоты, имеем: . Отсюда , следовательно, . Проверка размерности: . Расчет: (Tл) Ответ: .
Задача №5
На дифракционную решетку нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в n = 4,6 раза больше длины световой волны. Найти общее число m дифракционных максимумов, которое теоретически возможно наблюдать в данном случае.
Решение: Для решения задачи воспользуемся условием максимума дифракционной решетки. Разность хода лучей от соседних щелей должна быть равна целому числу длин волн. , (1) где k – порядок максимума. Модуль не может превысить единицу. Поэтому из формулы (1) вытекает, что наибольший порядок наблюдаемого максимума k max должен быть меньше отношения периода решетки d к длине волны λ kmax < ; следовательно, kmax < . Общее количество максимумов будет равно сумме центрального максимума и числа максимумов справа и слева от центрального: . Ответ: 9 максимумов.
Задача №6
Параллельный пучок электронов, ускоренный напряжением 30 В, падает нормально на экран, в котором имеется щель шириной . За экраном, на расстоянии 0,1 м от него параллельно щели перемещается детектор очень малых размеров. Какова примерно ширина области, в которой детектор зарегистрирует электроны?
Решение: Электрическое поле, совершая работу, равную , сообщает электрону кинетическую энергию , т.е. или , где p – импульс электрона. Отсюда: Движущийся электрон, как и любая другая микрочастица, обладает волновыми свойствами. Длина волны де Бройля , где h – постоянная Планка. Пучок электронов испытывает дифракцию на щели. Наиболее вероятная область локализации электрона может быть отнесена к центральному максимуму дифракционной картины, граница которого определится условием минимума первого порядка . Из рисунка находим, полагая ввиду малости углов , Проверка размерности: . Расчет: (м) = 0,7 (см). Обсуждение результата. Приведенное решение соответствует классической ситуации, когда электрическое поле создает движение со скоростью (скорости света). При напряжениях порядка В необходимо перейти к соотношениям релятивистской динамики: , и проводить анализ решения на основе этого соотношения. Ответ: = 0,7 см.
Используемая литература: 1. Савельев, И.В. Курс общей физики: В 3 т. [Текст]: Учебное пособие / И. В. Савельев.– Изд.5-е, стереотип. – СПб.: Изд-во “Лань”, 2006, Т.1- 496 с. – (Механика, колебания и волны, молекулярная физика). 2. Савельев, И.В. Курс общей физики: В 3 т. [Текст]: Учебное пособие / И. В. Савельев.– Изд.5-е, стереотип. – СПб.: Изд-во “Лань”, 2006, Т.2. - 496 с.- (Электричество и магнетизм. Волны. Оптика). 3. Савельев, И.В. Курс общей физики: В 3 [Текст]: Учебное пособие / И. В. Савельев. – Изд.5-е, стереотип. – СПб.: Изд-во “Лань”, 2006,т. - 2-е изд., испр. - М.: Наука, 1982. Т.3 - 304 с. (Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц) 4. Пиралишвили,Ш.А. Механика. Электромагнетизм. - [Текст]/ Ш.А.Пиралишвили, Н.А.Мочалова, З.В.Суворова, Е.В.Шалагина, В.В.Шувалов. –М.: Машиностроение, 2006. -336с. 5. Пиралишвили, Ш.А. Колебания. Волны. Геометрическая и волновая оптика. Квантовая и ядерная физика..- [Текст]/ Ш.А.Пиралишвили, Н.А.Мочалова, З.В.Суворова, Е.В.Шалагина, В.В.Шувалов. –М.: Машиностроение-1, 2007. -341с. 6. Пиралишвили, Ш.А.Термодинамика и молекулярная физика. Элементы статистической физики. Элементы физики конденсированного состояния. - [Текст]/ Ш.А.Пиралишвили, Н.А.Каляева, З.В.Суворова, Е.В.Шалагина, В.В.Шувалов. –М.: Машиностроение-1, 2008. -348с.
|
|||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-08; просмотров: 542; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.33.230 (0.011 с.) |