Понятие обобщенных сил и потоков. Линейные соотношения и соотношения взаимности Онзагера. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие обобщенных сил и потоков. Линейные соотношения и соотношения взаимности Онзагера.



В 1931 г. Ларс Онзагер предположил, что при небольших отклонениях от равновесия существует линейная связь между потоками Ji, где i = 1, 2,...

, n и термодинамическими силами Xj, где j =1, 2,..., n. При этом каждая термодинамическая сила может вызвать несколько различных потоков. Например, такая сила, как градиент температуры, может вызвать не только поток теплоты, но и поток вещества или электрический ток. В общем случае поток может зависеть от градиента нескольких величин.

Например, существует одновременный перепад температуры, плотности газа и т. д. Эти процессы описываются системой уравнений................................ где J1 - плотность теплового потока; L11 - коэффициент теплопроводности; X1 - минус градиент температуры; L12 - коэффициент термодиффузии; X2 - минус градиент плотности; L21 - коэффициент диффузионной теплопроводности; L22 - коэффициент диффузии и т. д.

Сокращенная запись обобщенных термодинамических уравнений движения имеет вид, (9.5) где i = 1, 2,..., n. Постоянные коэффициенты Lij называются кинетическими коэффициентами. Кинетические коэффициенты могут быть функциями параметров состояния, но не зависят от Ji, Xj, а определяются в рамках молекулярно-кинетической теории. Ларс Онзагер показал, что недиагональные коэффициенты равны при соответствующем выборе потоков и сил (i ≠ j).

(9.6) Равенства (9.6) называют соотношениями взаимности Онзагера. Их значение состоит в том, что они связывают различные физические процессы (например, явление термодиффузии и диффузионный термоэффект). По характеристикам одного процесса можно предсказать характеристики другого. Эти два принципа - принцип линейности термодинамических потоков и соотношение взаимности Онзагера - легли в основу развитой им теории неравновесных процессов и стимулировали развитие линейной неравновесной термодинамики.

41. Электрорецепция.

ЭЛЕКТРОРЕЦЕПЦИЯ - способность многих рыб (акулы, скаты и др.) воспринимать электрические сигналы окружающей среды, в т. ч. генерируемые электрическими органами. Электрорецепция используется для поиска добычи, биокоммуникации и ориентации, восприятия магнитного поля Земли.

Осуществляется электрорецепторами. Замечательная электрочувствительность слабо электрических рыб и других животных достигается двумя типами рецепторов электрических полей: ампулярными и бугорковыми органами рыб. Оба типа рецепторов являются модификациями системы боковой линии, вездесущей у рыб. Ампулярные органы - это группы сенсорных клеток, организованных вокруг полости длинного, заполненного желеобразным содержимым, канала. Сенсорные клетки ампул почти полностью окружены вспомогательными клетками.

Только верхушка сенсорной клетки остается свободной и контактирует с пластинкой ампулы. Бугорковые электрические органы рыб отличаются от ампулярных органов двумя существенными чертами. Во-первых, они не соединены с внешней средой желе-заполненным каналом. Вместо этого канал закупорен специализированными эпителиальными клетками. Во-вторых, сенсорные клетки в полость выходят не только верхушкой, а выдвинуты в нее на 90% и лишь присоединены (обычно) к небольшому поддерживающему холмику.

Два класса электрорецепторов имеют различные характеристики ответа. Афферентные волокна из ампулярных сенсорных клеток дают "тонические" - длительные и непрерывные ответы на низкочастотные (от менее 0,1 Гц до 10 - 25 Гц) стимулы или постоянный ток. Ампулярные органы имеют широкий диапазон чувствительности с порогами от менее 20 нВ/см до 10 -100 мкВ/см. Напротив, бугорковые органы чувствительны к высоким частотам и нечувствительны к низким и постоянному току. Сенсорные волокна из бугорковых органов дают "фазические" ответы - короткий залп активность на ступенчатое изменение стимулирующего напряжения.

И тонические (ампулярные), и фазические (бугорковых органов) рецепторы имеются и у клюворылых, и у гимнотид. Бугорковые органы отстутствуют у неэлектрических и морских рыб. Электрическое сопротивление тела значительно ниже, чем окружающей среды. Если рыба ориентирована вдоль градиента потенциала, ток входит на одном ее конце (скажем, в голове) и выходит на другом (в хвосте). Индивидуальные электрорецепторы стимулируются различиями между внутренним и наружным электрическим потенциалами.

Эти различия максимальны у головы и хвоста, где входит и выходит ток. В отличие от хрящевых рыб с их высокоорганизованной системой ампул Лоренцини пресноводные клюворылые и гимнотиды как электрочувствительный орган используют все свое тело.

Как влияет удаление малозначащих признаков из обучающей выборки на процесс обучения нейросети. Пример на ЭВМ.

Искусственная нейронная сеть (ANN — artificial neural network) представляет собой вычислительную архитектуру для обработки сложных данных с помощью множества связанных между собой процессоров и вычислительных путей. Искусственные нейронные сети, созданные по аналогии с человеческим мозгом, способны обучаться и анализировать большие и сложные наборы данных, которые с помощью более линейных алгоритмов обработать крайне сложно. Для обучения нейронной сети необходима обучающая выборка (задачник), состоящая из примеров.

Каждый пример представляет собой задачу одного и того же типа с индивидуальным набором условий (входных параметров) и заранее известным ответом. Например, в качестве входных параметров в одном примере могут использоваться данные обследования одного больного, тогда заранее известным ответом в этом примере может быть диагноз. Несколько примеров с разными ответами образуют задачник. Задачник располагается в базе данных, каждая запись которой является примером. Не останавливаясь на математических алгоритмах, подробно описанных в монографии [5.45], рассмотрим общую схему обучения нейросети.

1. Из обучающей выборки берется текущий пример (изначально, первый) и его входные параметры (представляющие в совокупности вектор входных сигналов) подаются его на входные синапсы обучаемой нейросети. Обычно каждый входной параметр примера подается на один соответствующий входной синапс. 2. Нейросеть производит заданное количество тактов функционирования, при этом вектор входных сигналов распространяется по связям между нейронами (прямое функционирование). 3. Измеряются сигналы, выданные теми нейронами, которые считаются выходными. 4. Производится интерпретация выданных сигналов, и вычисляется оценка, характеризующая различие между выданным сетью ответом и требуемым ответом, имеющимся в примере.

Оценка вычисляется с помощью соответствующей функции оценки. Чем меньше оценка, тем лучше распознан пример, тем ближе выданный сетью ответ к требуемому. Оценка, равная нулю, означает что требуемое соответствие вычисленного и известного ответов достигнуто. Заметим, что только что инициализированная (необученная) нейросеть может выдать правильный ответ только совершенно случайно. 5. Если оценка примера равна нулю, ничего не предпринимается.

В противном случае на основании оценки вычисляются поправочные коэффициенты для каждого синаптического веса матрицы связей, после чего производится подстройка синаптических весов (обратное функционирование). В коррекции весов синапсов и заключается обучение. 6. Осуществляется переход к следующему примеру задачника и вышеперечисленные операции повторяются. Проход по всем примерам обучающей выборки с первого по последний считается одним циклом обучения. При прохождении цикла каждый пример имеет свою оценку.

Вычисляется, кроме того, суммарная оценка множества всех примеров обучающей выборки. Если после прохождения нескольких циклов она равна нулю, обучение считается законченным, в противном случае циклы повторяются. Количество циклов обучения, также как и время, требующееся для полного обучения, зависят от многих факторов - величины обучающей выборки, количества входных параметров, вида задачи, типа и параметров нейросети и даже от случайного расклада весов синапсов при инициализации сети.

43. Пространственная конфигурация биополимеров. Типы объемных взаимодействий в белковых макромолекулах.

Водородные связи. Общие черты пространственных структур различных белков были установлены в работах Л.Полинга и Р.Кори: 1. Длины связей и величины валентных углов всех пептидых груп - одинаковы. 2. Все атомы пептидной группы расположены в одной плоскости и предпочтительной конфигурацией пептидной группы является транс-конфигурация 3. Полипептидная цепь полностью насыщена водородными связями 4. Двухгранные углы вращения вокруг связей N - Cа и Cа - С' отвечают минимумам торсионных потенциалов, а расстояния между всеми валентно не связанными атомами превышают суммы ван-дер-ваальсовых радиусов.

5. Конформационные состояния всех звеньев полипептидной цепи эквивалентны. Полинг и Кори, сформулировали гипотезу, согласно которой альфа-спираль и складчатая бэта-структура имеют фундаментальное значение в пространственной организации белковых молекул и что структуры фибриллярных, глобулярных белков и синтетических пептидов могут быть описаны с помощью небольшого числа канонических форм - некоторых структурных блоков. В результате стереохимических преобразований в структуре белковой молекулы формируются соответствующие молекулярные органы и исполнительные механизмы, а на локальных и поверхностных участках возникает такая пространственно-упорядоченная организация боковых атомных R-групп элементов, которая в живой системе играет роль стереохимических кодовых информационных сигналов. К таким сигналам могут относиться: стереохимические команды управления активного центра фермента (адресный код и код химической операции; различные сигнальные и регуляторные кодовые компоненты; коммуникативные локальные и поверхностные кодовые стереохимические матрицы (микроматрицы), служащие для информационного взаимодействия белковых молекул с их молекулярными партнёрами и т. д.

При этом, сама программа функционирования белковой молекулы (благодаря программирующим свойствам элементов) коммутируется лабильными физико-химическими силами, связями и взаимодействиями между боковыми R-группами элементов (аминокислот) в составе её трёхмерной структуры. Поэтому природа взаимодействий боковых атомных групп, определяющих конформационные особенности и внутреннюю динамику белковой макромолекулы, имеет химическую основу и носит информационный характер. Общая структура свернутого белка исключительно компактна. Например, полностью вытянутая цепь панкреатического трипсинового ингибитора (58 остатков) имеет длину 21.1 нм, а максимальный габаритный размер свернутого белка равен около 2.9 нм. Карбоксипептидаза, состоящая из 307 аминокислотных остатков, в вытянутой форме имеет длину 111.4 нм, а в свернутой - 5.0 нм.

По плотности упаковки белки очень близки кристаллам малых органических молекул (70-78 %), связанных между собой дисперсионными, лондоновскими силами. Из-за высокой плотности упаковки белки отличаются слабой сжимаемостью. Так их коэффициент сжимаемости меньше, чем у масла, и практически совпадает с коэффициентами сжимаемости олова и каменной соли. Плотность белка не одинакова во всех частях глобулы. Плотность центральной части ниже кажущейся плотности белковой молекулы в растворе.

Низкая плотность и даже "пустоты", т.е. области, не заполненные атомами белка, встречаются в различных частях глобулы. Как правило, в них находятся единичные молекулы воды, связанные с аминокислотными остатками водородными связями. Молекулы воды обнаруживаются рентгеноструктурным анализом и составляют с белком как бы единое целое.

Хеморецепция.

Хеморецепция, восприятие одноклеточным организмом или специализированными клетками (хеморецепторами) многоклеточного организма существенных для его жизнедеятельности химических раздражителей, находящихся во внешней или внутренней среде. Хеморецептор (chemoreceptor) - афферентный нейрон, который отвечает генерацией нервного импульса на взаимодействие рецепторного белка с определенной химической молекулой на появление в организме особых химических соединений. Импульс распространяется по чувствительным нервам. Хеморецепторы в большом количестве присутствуют во вкусовых сосочках языка, а также на слизистой оболочке носа.

Способность в той или иной мере анализировать химический состав окружающей среды и реагировать определённым образом на его изменения присуща всем живым организмам. На основе этой способности у них в ходе эволюции образовалось несколько специализированных видов Х. У микроорганизмов сравнительно хорошо изучена Х. пищевых веществ. У многоклеточных организмов обособляется сенсорная Х.

, на основе которой развиваются органы чувств. Для позвоночных животных, а также для насекомых характерны специализированные формы Х. - обонятельная и вкусовая. У наземных животных контактная и дистантная Х. обычно представлена соответственно вкусовой и обонятельной рецепцией.

У животных имеется и малоспециализированный тип Х. - "общее химическое чувство", с помощью которого обеспечивается чувствительность покровов тела к едким, раздражающим веществам. Химический анализ внутренних сред организма (например, крови, тканевой жидкости) осуществляется посредством интерорецепции. Наряду с сенсорной Х. и интерохеморецепцией у многоклеточных организмов в ходе эволюционного развития выделились др.

типы клеточной рецепции, которые также можно отнести к Х. в широком смысле слова, например рецепция гормонов, рецепция синаптических медиаторов.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 365; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.218.146 (0.013 с.)