Основы микродозиметрии ионизирующих излучений. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основы микродозиметрии ионизирующих излучений.



Первичные процессы поглощения энергии ионизирующих излучений.

Действие ионизирующего излучение проявляется в несколько этапов. 1. Физическая стадия.

Энергия излучения передаётся веществу, в нём возникают ионизированные и возбуждённые молекулы, неравномерно распределённые в объёме вещества. Эти эффекты проявляются в первые 10-16-10-13с. 2. Физико-химическая стадия. Эта стадия представлена различными реакциями, приводящими к перераспределению энергии между молекулами. В результате образуются активные молекулярные элементы: ионы, радикалы, сольватированные электроны.

10-13-10-6с. 3. Химическая стадия. Радикалы взаимодействуют, образуя повреждения разного рода, что приводит к инактивации или нарушению функций макромолекул. 10-6-10-3с. Различают два механизма радиационного повреждения макромолекул: Прямой: Когда инактивированными оказываются молекулы непосредственно поглотившие энергию излучения.

Непрямой: Когда молекулы инактивируются в результате взаимодействия с активными реакционноспособными продуктами радиационного воздействия. Прямое действие ионизирующего излучения исследуют при облучении сухих очищенных препаратов макромолекул. Прямое действие на ДНК выражается в одноцепочечных и двухцепочечных разрывах, межмолекулярных поперечных сшивках нуклеотидов и образовании разветвлённых цепей ДНК. Прямое действие на белки связано с изменением аминокислотного состава, нарушением третичной структуры, с разрывами АК цепей, разрывами дисульфидных связей, агрегацией молекул. Инактивация белка происходит при повреждении только определённых его групп, но его инактивация происходит даже при поглощении одного кванта излучения молекулой.

Этот эффект связан с миграцией энергии в белках от места поглощения к месту проявления эффекта. Непрямое действие при облучении растворов биологических веществ. При этом непрямой эффект излучения проявляется значительно сильнее, чем прямой. Радиочувствительность при разбавлении возрастает в 100 раз. Повреждение органических молекул в растворе в большой мере связано с продуктами радиолиза воды.

Поскольку в растворе молекул воды значительно больше, чем растворённых веществ, вероятность поглощения излучения ими значительно больше. В процессе прохождения частицы через воду вдоль её пути образуются возбуждённые производные воды: радикал протона, гидроксирадикал, сольватированные электроны, ион гидроксония. Часть образующихся радикалов рекомбинируют с образованием нейтральных продуктов или перекиси, но часть радикалов может взаимодействовать с растворёнными органическими молекулами. В результате образуются свободные органические радикалы, которые могут вступать в дальнейшие реакции, часто имеющие цепной характер.

Как влияет удаление малозначащих признаков из обучающей выборки на процесс обучения нейросети. Пример на ЭВМ.

Искусственная нейронная сеть (ANN — artificial neural network) представляет собой вычислительную архитектуру для обработки сложных данных с помощью множества связанных между собой процессоров и вычислительных путей. Искусственные нейронные сети, созданные по аналогии с человеческим мозгом, способны обучаться и анализировать большие и сложные наборы данных, которые с помощью более линейных алгоритмов обработать крайне сложно. Для обучения нейронной сети необходима обучающая выборка (задачник), состоящая из примеров.

Каждый пример представляет собой задачу одного и того же типа с индивидуальным набором условий (входных параметров) и заранее известным ответом. Например, в качестве входных параметров в одном примере могут использоваться данные обследования одного больного, тогда заранее известным ответом в этом примере может быть диагноз. Несколько примеров с разными ответами образуют задачник. Задачник располагается в базе данных, каждая запись которой является примером. Не останавливаясь на математических алгоритмах, подробно описанных в монографии [5.45], рассмотрим общую схему обучения нейросети.

1. Из обучающей выборки берется текущий пример (изначально, первый) и его входные параметры (представляющие в совокупности вектор входных сигналов) подаются его на входные синапсы обучаемой нейросети. Обычно каждый входной параметр примера подается на один соответствующий входной синапс. 2. Нейросеть производит заданное количество тактов функционирования, при этом вектор входных сигналов распространяется по связям между нейронами (прямое функционирование). 3. Измеряются сигналы, выданные теми нейронами, которые считаются выходными. 4. Производится интерпретация выданных сигналов, и вычисляется оценка, характеризующая различие между выданным сетью ответом и требуемым ответом, имеющимся в примере.

Оценка вычисляется с помощью соответствующей функции оценки. Чем меньше оценка, тем лучше распознан пример, тем ближе выданный сетью ответ к требуемому. Оценка, равная нулю, означает что требуемое соответствие вычисленного и известного ответов достигнуто. Заметим, что только что инициализированная (необученная) нейросеть может выдать правильный ответ только совершенно случайно. 5. Если оценка примера равна нулю, ничего не предпринимается.

В противном случае на основании оценки вычисляются поправочные коэффициенты для каждого синаптического веса матрицы связей, после чего производится подстройка синаптических весов (обратное функционирование). В коррекции весов синапсов и заключается обучение. 6. Осуществляется переход к следующему примеру задачника и вышеперечисленные операции повторяются. Проход по всем примерам обучающей выборки с первого по последний считается одним циклом обучения. При прохождении цикла каждый пример имеет свою оценку.

Вычисляется, кроме того, суммарная оценка множества всех примеров обучающей выборки. Если после прохождения нескольких циклов она равна нулю, обучение считается законченным, в противном случае циклы повторяются. Количество циклов обучения, также как и время, требующееся для полного обучения, зависят от многих факторов - величины обучающей выборки, количества входных параметров, вида задачи, типа и параметров нейросети и даже от случайного расклада весов синапсов при инициализации сети.

43. Пространственная конфигурация биополимеров. Типы объемных взаимодействий в белковых макромолекулах.

Водородные связи. Общие черты пространственных структур различных белков были установлены в работах Л.Полинга и Р.Кори: 1. Длины связей и величины валентных углов всех пептидых груп - одинаковы. 2. Все атомы пептидной группы расположены в одной плоскости и предпочтительной конфигурацией пептидной группы является транс-конфигурация 3. Полипептидная цепь полностью насыщена водородными связями 4. Двухгранные углы вращения вокруг связей N - Cа и Cа - С' отвечают минимумам торсионных потенциалов, а расстояния между всеми валентно не связанными атомами превышают суммы ван-дер-ваальсовых радиусов.

5. Конформационные состояния всех звеньев полипептидной цепи эквивалентны. Полинг и Кори, сформулировали гипотезу, согласно которой альфа-спираль и складчатая бэта-структура имеют фундаментальное значение в пространственной организации белковых молекул и что структуры фибриллярных, глобулярных белков и синтетических пептидов могут быть описаны с помощью небольшого числа канонических форм - некоторых структурных блоков. В результате стереохимических преобразований в структуре белковой молекулы формируются соответствующие молекулярные органы и исполнительные механизмы, а на локальных и поверхностных участках возникает такая пространственно-упорядоченная организация боковых атомных R-групп элементов, которая в живой системе играет роль стереохимических кодовых информационных сигналов. К таким сигналам могут относиться: стереохимические команды управления активного центра фермента (адресный код и код химической операции; различные сигнальные и регуляторные кодовые компоненты; коммуникативные локальные и поверхностные кодовые стереохимические матрицы (микроматрицы), служащие для информационного взаимодействия белковых молекул с их молекулярными партнёрами и т. д.

При этом, сама программа функционирования белковой молекулы (благодаря программирующим свойствам элементов) коммутируется лабильными физико-химическими силами, связями и взаимодействиями между боковыми R-группами элементов (аминокислот) в составе её трёхмерной структуры. Поэтому природа взаимодействий боковых атомных групп, определяющих конформационные особенности и внутреннюю динамику белковой макромолекулы, имеет химическую основу и носит информационный характер. Общая структура свернутого белка исключительно компактна. Например, полностью вытянутая цепь панкреатического трипсинового ингибитора (58 остатков) имеет длину 21.1 нм, а максимальный габаритный размер свернутого белка равен около 2.9 нм. Карбоксипептидаза, состоящая из 307 аминокислотных остатков, в вытянутой форме имеет длину 111.4 нм, а в свернутой - 5.0 нм.

По плотности упаковки белки очень близки кристаллам малых органических молекул (70-78 %), связанных между собой дисперсионными, лондоновскими силами. Из-за высокой плотности упаковки белки отличаются слабой сжимаемостью. Так их коэффициент сжимаемости меньше, чем у масла, и практически совпадает с коэффициентами сжимаемости олова и каменной соли. Плотность белка не одинакова во всех частях глобулы. Плотность центральной части ниже кажущейся плотности белковой молекулы в растворе.

Низкая плотность и даже "пустоты", т.е. области, не заполненные атомами белка, встречаются в различных частях глобулы. Как правило, в них находятся единичные молекулы воды, связанные с аминокислотными остатками водородными связями. Молекулы воды обнаруживаются рентгеноструктурным анализом и составляют с белком как бы единое целое.

Хеморецепция.

Хеморецепция, восприятие одноклеточным организмом или специализированными клетками (хеморецепторами) многоклеточного организма существенных для его жизнедеятельности химических раздражителей, находящихся во внешней или внутренней среде. Хеморецептор (chemoreceptor) - афферентный нейрон, который отвечает генерацией нервного импульса на взаимодействие рецепторного белка с определенной химической молекулой на появление в организме особых химических соединений. Импульс распространяется по чувствительным нервам. Хеморецепторы в большом количестве присутствуют во вкусовых сосочках языка, а также на слизистой оболочке носа.

Способность в той или иной мере анализировать химический состав окружающей среды и реагировать определённым образом на его изменения присуща всем живым организмам. На основе этой способности у них в ходе эволюции образовалось несколько специализированных видов Х. У микроорганизмов сравнительно хорошо изучена Х. пищевых веществ. У многоклеточных организмов обособляется сенсорная Х.

, на основе которой развиваются органы чувств. Для позвоночных животных, а также для насекомых характерны специализированные формы Х. - обонятельная и вкусовая. У наземных животных контактная и дистантная Х. обычно представлена соответственно вкусовой и обонятельной рецепцией.

У животных имеется и малоспециализированный тип Х. - "общее химическое чувство", с помощью которого обеспечивается чувствительность покровов тела к едким, раздражающим веществам. Химический анализ внутренних сред организма (например, крови, тканевой жидкости) осуществляется посредством интерорецепции. Наряду с сенсорной Х. и интерохеморецепцией у многоклеточных организмов в ходе эволюционного развития выделились др.

типы клеточной рецепции, которые также можно отнести к Х. в широком смысле слова, например рецепция гормонов, рецепция синаптических медиаторов.

Закон Вебера-Фехнера.

Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула. Закон Вебера — Фехнера можно объяснить тем, что константы скорости химических реакций проходящих при рецептировании нелинейно зависят от концентрации химических посредников физических раздражителей или собственно химических раздражителей. Для живого организма характерно свойство раздражимости, т.е.

способность отвечать на раздражение. Любое раздражение имеет свои основные параметры (интен-ть, длит-ть, градиент и т.д.), которое проявляется в деятельности анализаторов. Анализатор (как система) состоит из 3-х частей - периферический конец, проводник и корковый конец.

Биофизический метод в исследованиях анализаторов позволяет установить ряд количественных закономерностей. В 1834г. Э.Вебер уст-л для ряда анализаторов закон постоянства отношения DI/I, где DI- миним-й воспринимаемый прирост раздражения к его исходной величине. Позже Фехнер док-л, что минимальный прирост ощущения dS зависит от соотношения величин раздражения по формуле dS=CdR/R, где С- константа пропорц-сти.

Отсюда, после интегр-ия получим S=KlnR/r, где r- величина раздр-ия, равная абсолютному порогу. Отметим, что при R=r имеем S=0. Если принять r за единицу измерения, то S=KlnR.

Основы микродозиметрии ионизирующих излучений.

Ионизирующие излучения условно подразделяются на электромагнитные излучения и корпускулярные излучения: · Ионизирующие излучения представлены электромагнитными волнами высокой частоты. Рентгеновское – 3х106 – 3х109 ГГц и γ-излучение – >3х109 ГГц · Корпускулярные излучения представлены частицами с ненулевой массой, обладающими высокими скоростями. Такими частицами могут быть электроны, позитроны, нейтроны, α-частицы, ускоренные ионы. В результате радиоактивного распада образуется три типа излучения, различных по своим характеристикам.

Линейная плотность ионизации. Эта величина показывает число ионов одного знака, образованных ионизирующей частицей или фотоном на элементарном пути. Наибольшей линейной плотностью ионизации обладает α-излучение, поскольку оно образовано тяжёлыми ядрами гелия и обладает большой кинетической энергией. Величина линейной плотности ионизации пропорциональна энергии излучения. Средний линейный пробег.

Величина, отражающая проникающую способность излучения. Самым проникающим излучением является γ-излучение. Средний пробег в воздухе 300м., в тканях – 1 метр. β-излучение обладает промежуточными значениями линейной плотности и линейного пробега.

Для оценки величины ионизирующего излучения и его влияния на вещество используют дозиметрические показатели. 1. Доза излучения или экспозиционная доза. Это величина, которая даёт представление о количестве энергии излучения, падающей на объект. Фактически равно полному заряду ионов одного знака, возникающих в элементарном объёме воздуха в отношении к массе воздуха. Измеряется в Кулонах на килограмм.

Внесистемная единица: рентген. 1рентген=2,58х10-4Кл/кг. Интенсивность излучения определяют в единицах рентген в секунду. 2. Доза облучения или поглощённая доза. Это величина энергии ионизирующего излучения, переданная веществу.

Эта величина измеряется в единицах Грей. 1Грей равен дозе любого ионизирующего излучения при котором в 1кг вещества поглощается 1Дж энергии этого излучения. Внесистемная единица: 1Рад = 10-2Грей. 3. Эквидозиметрические показатели. Это показатели биологического действия ионизирующего излучения.

· Относительная биологическая эффективность – коэффициент, показывающий во сколько раз излучение данного типа отличается от стандартного рентгеновского излучения при 180-250 кэВ. · Эквивалентная доза – поглощённая в органах и тканях доза излучения умноженная на взвешенный коэффициент для данного вида излучения, отражающий качественное воздействие излучения на объект. Единица измерения Зиверт = 1Дж/кг. Внесистемная: БЭР = 1/100 Зиверт.

3. Записать алгоритм расчета доверительного интервала.

Расчет доверительного интервала: 1. Среднее арифметическое 2. D*(t) – дисперсия 3. σ*t – среднее квадратичное отклонение K= n-1 4. Средняя погрешность, Δt tk,β – критерий Стьюдента 5. Доверительный Интервал

 

4. Методологические вопросы биофизики. История развития отечественной биофизики.

В биофизике выделяют 3 основных направления исследований – молекулярная, биофизика клетки, биофизика сложных систем. Основными объектами исследования молекулярной биофизики являются функционально активные вещества и среди них белки и нуклеиновые кислоты. Биофизика клетки имеет дело с надмолекулярными структурами живой клетки, среди которых особое место занимают мембранные структуры клеток и субклеточных структур.

Биофизика сложных систем рассматривает живые организмы различного уровня организации с позиции физико-математического моделирования. Объектами исследования в этом случае являются сообщества клеток, живые ткани, физиологические системы, популяции организмов. Построение моделей является одним из главных этапов биофизического исследования. Живой организм представляет собой очень сложную систему, не всегда доступную для точного физического эксперимента. В этом случае плодотворным становится использование физических, аналоговых,математических моделей.

Любое крупное открытие в биофизике получено путём применения моделей. Представление биомакромолекул в виде кристаллов позволило установить молекулярную структуру гемоглобина миоглобина. Важную роль сыграла аналоговая электрическая модель возбудимой мембраны в исследованиях Ходжкина и Хаксли. В биофизике мембран широкое применение получили физические модели мембран в виде моно- и бимолекулярных липидных плёнок. С развитием и совершенствованием вычислительной техники моделирование получает новое развитие.

Такие науки как биология, медицина, сельскохозяйственные науки становятся всё более точными. Трудно переоценить в этом случае роль биофизики призванной исследовать явления жизни с использованием физических представлений и методов. История развития биофизики. Первый научно-исследовательский биофизический институт в Советской России был создан в системе Наркомата здравоохранения академиком П.П.

Лазаревым, которым в 1922 году был прочитан первый курс по биофизике врачам клиники Московского университета. В 1927 г. также П.П. К концу 30-ых годов стали читать отдельные главы биофизики и в других учебных заведениях.

Так началась подготовка биофизиков в нашей стране. В 1953 г. была организована первая специализированная кафедра биофизики на биолого-почвенном факультете в МГУ. В 1959 г. была создана кафедра на физическом факультете МГУ, затем были созданы специализированные кафедры биофизики в Московском физико-техническом институте, в ряде медицинских ВУЗов и университетов по всей стране.

В 1982 г. в стране существовало свыше 20 кафедр биофизики. В.В. Шулейкин был сотрудником первого Биофизического института, созданного П.

П. Лазаревым. По инициативе В.В. Шулейкина и при поддержке П.П. Лазарева при этом Институте была основана в Кацивелли (на Южном берегу теперь уже не российского Крыма) морская станция, которой руководил В.

В. Шулейкйн, где он сделал ряд работ по физике и биофизике моря. Были получены ответы на многие вопросы, которые имели в том числе и существенное значение для создания новых образцов военно-морской техники, например, сверхскоростных сторожевых катеров на подводных крыльях. Перечень этих вопросов был обширен: почему некоторые рыбы, например, дельфины, могут развивать большую скорость при низких энергетических затратах; как осуществляется движение летучих рыб; почему движение стай птиц или косяков рыб выгоднее, чем движение одиночной особи; как и почему морские животные чувствуют задолго до начала шторма его приближение и уходят на глубину, чтобы не разбиться о прибрежные камни и т.п.

Распад СССР, конечно, повлиял на биофизику, но главная беда заключалась в резком снижении финансирования. В наше время биофизика продолжает развиваться.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 210; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.218.147 (0.022 с.)