Коэффициенты характеристического уравнения. След матрицы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Коэффициенты характеристического уравнения. След матрицы.



Теорема 7.23. Коэффициент характеристического уравнения при равен .

Доказательство получается раскрытием определителя .

Сумма элементов матрицы A, расположенных на главной диагонали, называется следом матрицы. След матрицы является коэффициентом характеристического многочлена и не зависит от выбора базиса..

7.7 Диагонализируемые преобразования

Линейное преобразование называется диагонализируемым, если существует базис, в котором матрица линейного преобразования имеет диагональный вид. Заметим, что базис, в котором матрица линейного преобразования имеет диагональный вид, образован собственными векторами. Верно и обратное. В базисе из собственных векторов матрица линейного преобразования имеет диагональный вид. Не каждое линейное преобразование диагонализируемо. Например, линейное преобразование, заданное матрицей не диагонализируемо.

Теорема 7.24. Собственные векторы, отвечающие различным собственным значениям, линейно независимы.

Доказательство. Пусть - линейно независимая система собственных векторов, соответствующих собственному значению , где i =1,…, s. Покажем линейную независимость системы векторов индукцией по s. При s =1 утверждение очевидно. Пусть оно верно для s -1. Покажем его справедливость для s. Допустим, система - линейно зависима. Тогда найдутся коэффициенты не все равные нулю, что . Из этого равенства выводим или . По предположению индукции все коэффициенты в этом равенстве равны 0, и, значит при i < s. Но тогда система - линейно зависима, что противоречит условиям теоремы. К полученному противоречию привело допущение о линейной зависимости системы векторов , значит, эта система линейно независима, что и требовалось доказать.

Рассмотрим вопрос о количестве линейно независимых собственных векторов, соответствующих собственному числу .

Геометрической кратностью собственного числа называется дефект преобразования , а алгебраической кратностью называется кратность корня в характеристическом многочлене.

Теорема 7.25. Геометрическая кратность не превосходит его алгебраической кратности.

Доказательство. Пусть геометрическая кратность равна k. Дополним базис ядра преобразования до базиса всего пространства . Матрица линейного преобразования в этом базисе имеет вид и характеристический многочлен равен . Таким образом, алгебраическая кратность не меньше геометрической кратности, что и требовалось доказать.

Теорема 7.26 Линейное преобразование линейного пространства V над числовым полем P диагонализируемо тогда и только тогда, когда характеристический многочлен раскладывается над полем P на линейные множители и алгебраическая кратность каждого корня совпадает с его геометрической кратностью.

Доказательство очевидно.

Теорема Шура

Пусть - линейное преобразование пространства V над полем комплексных чисел C. Линейное преобразование имеет хотя бы один собственный вектор (Следствие 7.16). Этот факт можно усилить.

Теорема 7.27. Пусть - линейное преобразование пространства V над полем комплексных чисел C. Существует базис V, в котором матрица линейного преобразования имеет верхний треугольный вид.

Доказательство проведем индукцией по размерности V. Пусть утверждение верно для линейных преобразований (n -1)-мерных пространств. Покажем его справедливость для линейного преобразования n -мерного линейного пространства V. Поскольку линейное пространство над полем C, то существует собственный вектор h этого линейного преобразования. Дополним этот вектор до базиса всего пространства векторами . Матрица линейного преобразования в этом базисе имеет блочный вид , где - собственное число для вектора h. Обозначим через W линейную оболочку векторов . Векторы образуют базис W. Обозначим через линейное преобразование W, матрица которого в базисе равна A. По предположению индукции в подпространстве W существует базис , в котором матрица линейного преобразования имеет верхний треугольный вид. Пусть T – матрица перехода к этому базису. Тогда - верхняя треугольная матрица. Матрица перехода от базиса к базису равна , и, значит, матрица в базисе равна , то есть является верхней треугольной.

Аналогом доказанной теоремы над полем вещественных чисел является следующий результат.

Теорема 7.28. Пусть - линейное преобразование пространства V над полем вещественных чисел R. Существует базис V, в котором матрица линейного преобразования имеет блочный верхний треугольный вид. По главной диагонали стоят блоки первого и второго порядка.

Доказательство проведем индукцией по размерности n пространства V. Пусть утверждение верно для линейных преобразований пространств размерности меньшей n. Покажем его справедливость для линейного преобразования n -мерного линейного пространства V. Линейное преобразование имеет либо одномерное, либо двумерное инвариантное подпространство (Следствие 7.17). Дополним базис этого инвариантного подпространства до базиса всего пространства векторами , где k равно либо 2, либо 3. Матрица линейного преобразования в этом базисе имеет блочный вид , где - блок либо первого, либо второго порядка. Далее, рассуждения повторяют доказательство теоремы 7.6.

Теорема 7.29. (теорема Шура). Для линейного преобразования унитарного пространства V существует ортонормированный базис, в котором матрица линейного преобразования имеет верхний треугольный вид.

Доказательство. Пусть - базис V, в котором матрица линейного преобразования имеет верхний треугольный вид (Теорема 7.27). Применим к базису процесс ортогонализации и построим ортогональный базис . Матрица перехода T от базиса к базису - верхняя треугольная и . Поскольку произведение верхних треугольных матриц является верхней треугольной матрицей, то матрица - верхняя треугольная. Положим , где i= 1,…, n. Базис - ортонормированный и матрица линейного преобразования в этом базисе – верхняя треугольная, тем самым теорема доказана.

Теорема 7.30. Для линейного преобразования евклидова пространства V существует ортонормированный базис, в котором матрица линейного преобразования имеет блочный верхний треугольный вид. По главной диагонали расположены блоки первого и второго порядков.

Доказательство аналогично доказательству теоремы 7.7.

8 Сопряженные преобразования.

8.1 Линейное преобразование и билинейные функции

Пусть V евклидово (унитарное) пространство. Обозначим через множество всех линейных преобразований пространства V, а через B множество билинейных функций, заданных на V. Если , то функция является билинейной. Таким образом, определено однозначное отображение множества линейных преобразований LP в множество билинейных функций B. Исследуем свойства этого отображения.

Свойство 8.19. Разные линейные преобразования отображаются в разные билинейные функции.

Доказательство проведем методом от противного. Пусть найдутся два разных линейных преобразования и , которые отображаются в одну и ту же билинейную функцию. Тогда для любых векторов справедливо равенство или . Положим , тогда и для любого вектора . Это означат, что линейные преобразования равны, что противоречит допущению.

Свойство 8.20. Отображение линейных преобразований в билинейные функции взаимно однозначно.

Доказательство. Покажем, что для любой билинейной функции существует линейное преобразование , что . Для каждого вектора x определим подпространство . Ортогональное дополнение к этому подпространству имеет размерность не выше 1. Действительно, если и , то и для вектора справедливо включение , и, значит . Определим функцию , где z – базис . Если , то положим . Легко убедиться, что , и, значит функция - линейное преобразование.

Аналогично, можно рассмотреть отображение LP на B, задаваемое формулой . Это отображение взаимно однозначно.

Линейное преобразование называется сопряженным преобразованием к , если для любых векторов x,y из V справедливо равенство . Сопряженное преобразование к обозначают .

8.2 Сопряженное преобразование. Свойства.

Пусть e1,…,en базис V, - матрица линейного преобразования , G e – матрица Грама скалярного произведения. Перейдем от равенства векторов к равенству координат . Из этого равенства выводим . В случае ортонормированного базиса формула принимает более простой вид . Для евклидова пространства, знак комплексного сопряжения можно опустить.

Свойство 8.21. Перечислим свойства сопряженного преобразования

1)

2)

3)

4)

5) Если W инвариантное подпространство , то ортогональное дополнение к W инвариантно относительно .

Доказательство. Из равенства выводим первое свойство. Второе свойство получается из равенств . Для доказательства третьего свойства достаточно рассмотреть равенства . Четвертое свойство доказывается равенствами . Докажем пятое свойство. Для произвольного вектора x из W и произвольного вектора скалярное произведение . По определению сопряженного преобразования , и, значит , что и требовалось доказать.

Пятое свойство позволяет дать другое доказательство теоремы Шура.

8.3 Нормальное преобразование и его свойства.

Преобразование называется нормальным, если оно перестановочно с сопряженным преобразованием, то есть .

Свойство 8.22. Если x собственный вектор нормального преобразования с собственным значением , то x собственный вектор с собственным значением .

Доказательство. Пусть . Поскольку и , то .

Свойство 8.23. Собственные векторы нормального преобразования, соответствующие разным собственным значениям ортогональны.

Доказательство. Пусть x и y – собственные векторы нормального преобразования , соответствующие разным собственным значениям и (, ). Из равенств и (Свойство 8.22) выводим , , , . Далее, , откуда .

Теорема 8.31. Для нормального преобразования конечномерного унитарного пространства существует ортонормированный базис из собственных векторов.

Доказательство. Путь - ортонормированный базис унитарного пространства V, в котором матрица нормального преобразования является верхней треугольной. Пусть , тогда . Из равенства вытекает, что матрица A – диагональная, и, значит, базис составлен из собственных векторов.

Построение ортонормированного базиса из собственных векторов, в котором матрица нормального преобразования диагонализируема, можно осуществлять следующим образом. Найти какой ни будь базис из собственных векторов. При этом, собственные векторы, соответствующие разным собственным числам заведомо ортогональны (Свойство 8.23). Условие ортогональности может нарушаться только на собственных векторах, соответствующих одному и тому же собственному значению.

Если матрица линейного преобразования диагонализируема, то всегда можно ввести скалярное произведение таким образом, чтобы линейное преобразование стало нормальным.

Теорема 8.32. Для нормального преобразования конечномерного евклидова пространства существует ортонормированный базис, в котором матрица линейного преобразования имеет блочно-диагональный вид. По главной диагонали расположены блоки первого и второго порядка.

Доказательство. Путь - ортонормированный базис евклидова пространства V, в котором матрица нормального преобразования является блочной верхней треугольной. Пусть , тогда . Из равенства вытекает, что матрица A – блочно диагональная, что и требовалось доказать.

К сожалению, приведенное доказательство не раскрывает структуру блоков второго порядка, расположенных на главной диагонали. Поэтому дадим другое доказательство этой теоремы.

Доказательство 2. Множество является линейным пространством над полем комплексных чисел C. В этом линейном пространстве введем скалярное произведение . Определим линейное преобразование пространства как . Пусть - ортонормированный базис , тогда - ортонормированный базис унитарного пространства и - матрица с вещественными элементами. Далее, , и из равенства матриц выводим равенство , то есть преобразование - нормальное. Следовательно, существует ортонормированный базис унитарного пространства из собственных векторов нормального преобразования . Пусть - собственные числа этих векторов. Заметим, что ортонормированный базис получается объединением ортонормированных базисов подпространств . Если собственное число вещественное, то ортонормированный базис подпространства является также ортонормированным базисом подпространства . Поэтому, не нарушая общности можно считать, что вещественным собственным числам в базисе соответствуют векторы из V. Пусть f = x + iy – собственный вектор с комплексным собственным числом , тогда из равенств и выводим , , то есть линейное подпространство, натянутое на векторы x, y – инвариантно. Из полученных равенств вытекает , то есть вектор x - iy – собственный с собственным числом . Если ортонормированный базис , то - ортонормированный базис , поэтому, можно считать, что в базисе собственные векторы с комплексными собственными числами разбиты на пары. Рассмотрим пару , собственных векторов с собственными числами и . Эти векторы ортогональны всем остальным векторам из базиса, следовательно, векторы ортогональны всем остальным векторам. Далее, , откуда выводим и . Заменим векторы и на получим ортонормированный базис пространства V, в котором матрица линейного преобразования имеет блочно диагональный вид. По главной диагонали расположены блоки первого порядка, отвечающие вещественным собственным значениям, и блоки второго порядка , отвечающие комплексным собственным значениям.

Если матрица линейного преобразования диагонализируема, то всегда можно ввести скалярное произведение таким образом, чтобы линейное преобразование стало нормальным.

8.4 Ортогональные преобразования

Линейное преобразование называется ортогональным (унитарным) если оно сохраняет скалярное произведение, то есть . Из определения выводим или . Таким образом ортогональное преобразование является нормальным.

Свойство 8.24. Собственные числа ортогонального преобразования по модулю равны 1.

Доказательство. Пусть , тогда , и, значит, .

Следствие 8.18. Ортогональное преобразование евклидова пространства, в некотором ортонормированном базисе, сводится к выполнению последовательности тождественных преобразований, симметрий и поворотов в координатных плоскостях.

Доказательство. Ортогональное преобразование нормально, следовательно, существует ортонормированный базис, в котором матрица линейного преобразования имеет блочно диагональный вид. Блоки первого порядка соответствуют вещественным собственным числам, а блоки второго порядка – комплексным числам. Так как собственные числа ортогонального преобразования по модулю равны 1, то по главной диагонали могут стоять либо 1, либо -1, либо блок второго порядка . Для доказательства осталось заметить, что геометрический смысл указанных преобразований как раз и есть тождественные преобразования, симметрии и повороты в координатных плоскостях.

8.5 Самосопряженное преобразование.

Линейное преобразование называется самосопряженным, если .

Свойство 8.25. Собственные числа самосопряженного преобразования – вещественны.

Доказательство. Пусть x –собственный вектор самосопряженного преобразования (т.е. ). Из равенств выводим , то есть .

Следствие 8.19. Для самосопряженного линейного преобразования евклидова пространства существует ортонормированный базис из собственных векторов.

Доказательство. Самосопряженное преобразование является нормальным, и значит, существует ортонормированный базис, в котором матрица линейного преобразования имеет блочно диагональный вид. Поскольку все собственные числа вещественные, то все блоки первого порядка.

Полярное разложение

Самосопряженное преобразование называется положительно определенным, если .

Следствие 8.20. Все собственные числа положительно определенного самосопряженного линейного преобразования неотрицательны.

Доказательство. Пусть , тогда , и, значит, .

Теорема 8.33. (извлечение корня) Для положительно определенного самосопряженного линейного преобразования существует единственное положительно определенное самосопряженное преобразование , что .

Доказательство. Пусть - ортонормированный базис линейного пространства, в котором матрица - диагональная. Пусть . Все числа стоящие на главной диагонали неотрицательны. Положим . Легко убедиться, что линейное преобразование является положительно определенным самосопряженным преобразованием и . Единственность очевидна.

Теорема 8.34 (полярное разложение) Любое линейное преобразование можно представить в виде произведения самосопряженного положительно определенного линейного преобразования и ортогонального преобразования . Если - невырожденное, то представление единственно. Разложение называется правым, а разложение - левым.

Доказательство. Преобразование является самосопряженным и положительно определенным. Построим ортонормированный базис преобразования , при этом расположим собственные векторы, соответствующие нулевому собственному значению в конце базиса. Пусть - собственные векторы с не нулевыми собственными значениями, а - собственные векторы с нулевым собственным значением. Матрица - диагональная, поэтому первые k строк матрицы образуют ортогональную систему, а остальные равны 0. Длина j строки равна . Обозначим через первые k строк матрицы и дополним ортонормированную систему векторов векторами до ортонормированного базиса всего пространства. Обозначим через ортогональное преобразование, матрица которого в базисе образована строками , а через - положительно определенное самосопряженное преобразование, матрица которого в базисе диагональная и равна . Легко убедиться, что .

Для построения левого разложения достаточно найти правое разложение для сопряженного преобразования.

Поскольку , то преобразование определяется единственным образом. Если преобразование - невырожденное, то преобразование невырожденное, и, значит, определяется единственным образом.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 455; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.253.170 (0.069 с.)