Псевдорешения. Метод наименьших квадратов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Псевдорешения. Метод наименьших квадратов.



Рассмотрим несовместную систему линейных уравнений Ax = b. Псевдорешением системы линейных уравнений называется вектор x, на котором достигается минимум нормы невязки | Ax-b |. Задача построения псевдорешения возникает при подборе параметров физических процессов. Левая часть системы уравнений определяется конкретным видом зависимости от параметров, а правая – конкретными измерениями. Поскольку каждое измерение производится с некоторой точностью, то обычно их проводят с избытком. В результате получается несовместная система линейных уравнений, а задача подбора параметров сводится к построению псевдорешения. Сам способ перехода от задачи решения системы линейных уравнений к нахождению минимума длины невязки называется метод наименьших квадратов. Такое название связано с тем, что .

Обозначим через W линейную оболочку столбцов матрицы A. Задача построения псевдорешения эквивалентна задаче определения расстояния от b до W,а точнее к определению проекции b на W. Коэффициенты разложения проекции по столбцам матрицы A являются решениями системы уравнений . Тем самым, задача построения псевдорешения свелась к решению системы линейных уравнений.

Если исходная система имела решение, то оно является также псевдорешением. Необходимым и достаточным условием единственности псевдорешения является условие линейной независимости столбцов матрицы A.

Нормальное решение

В ряде случаев, из множества решений, следует выбрать какое то одно. Нормальным решением системы линейных уравнений Ax = b называется решение наименьшей длины.

Задача отыскания нормального решения сводится к задаче определения расстояния от начала координат до линейного многообразия, заданного системой линейных уравнений Ax = b.

Перпендикуляр, опущенный из начала координат на это линейное многообразие, представляется в виде линейной комбинации строк матрицы A. Следовательно, задача построения нормального решения сводится к решению системы линейных уравнений и вычислению ответа .

Нормальное решение всегда единственно, чего нельзя сказать о решении системы . Необходимым и достаточным условием единственности решения указанной системы является условие линейной независимости строк матрицы A.

Нормальное псевдорешение.

Задача построения нормального псевдорешения сводится к решению системы и вычисления нормального псевдорешения по формуле .

Унитарное пространство.

Пусть V линейное пространство над полем комплексных чисел. Можно ли обобщить понятие скалярного произведения на такое пространство. Оказывается, да! Для этого достаточно незначительно изменить аксиомы скалярного произведения.

1. .

2.

3. при .

Черта в свойстве 2 обозначает знак комплексного сопряжения. Пространство над полем комплексных чисел, в котором введено скалярное произведение называется унитарным.

Обозначим через G матрицу Грама базисных векторов, то есть матрицу на пересечении строки i столбца j стоит скалярное произведение i-го и j-го вектора . Используя матричные операции умножения, получаем . Матрицы Грама в разных базисах связаны формулой , где P матрица перехода. Все остальные свойства скалярного произведения полностью сохраняются.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 217; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.190.167 (0.005 с.)