Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Биполярные и полевые транзисторыСодержание книги
Поиск на нашем сайте
Транзистором называют полупроводниковый прибор с тремя и более выводами, предназначенный для усиления, генерирования и преобразования электрических колебаний. В зависимости от того, носители одного или обоих знаков участвуют в образовании тока, различают униполярные и биполярные транзисторы соответственно. Основу биполярного транзистора составляет транзисторная структура с двумя взаимодействующими p-n-переходами, обладающая усилительными свойствами. На рисунке 4.12 показана структура такого транзистора с выводами от каждой области. В зависимости от порядка чередования областей различают транзисторные структуры p-n-p и n-p-n. На рисунке 4.12 показаны схемы и условные обозначения этих структур. Среднюю часть кристалла с электрическим выводом называют базой, одну из крайних – эмиттером, вторую – коллектором. Рисунок 4.12 – Типы транзисторов (а) и их условное обозначение (б) Переход между эмиттером и базой обычно называют эмиттерным, а между коллектором и базой – коллекторным. В зависимости от напряжения смещения переходов различают три режима включения: активным, отсечки и насыщения. В активном режиме один из переходов смещен в прямом направлении, другой – в обратном. Если в прямом направлении включен эмиттерный переход, то такой режим называют нормальным. Токи во внешних цепях в активном режиме определяются высотой управляемого потенциального барьера открытого перехода, т. е. способностью перехода инжектировать неосновные носители в базу. Режим отсечки имеет место в том случае, когда оба перехода смещены в обратном направлении. В этом случае токи во внешних цепях малы и соизмеримы с обратным током одного из переходов. О транзисторе при этом говорят, что он заперт. В режиме насыщения оба перехода открыты, в базу инжектируются неосновные носители из области эмиттера и из области коллектора. Так как оба перехода открыты, то на структуру падает небольшое напряжение. По этой причине режим насыщения часто используют в тех случаях, когда транзистор выполняет роль ключа, предназначенного для замыкания цепи. Размыкание цепи осуществляется переводом транзистора в режиме отсечки, при этом транзисторная структура обладает большим сопротивлением. Полевой транзистор – полупроводниковый прибор, работа которого основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, а усилительные свойства обусловлены потоком основных носителей заряда одного знака, протекающим через проводящий канал. Управляющий электрод, изолированный от канала, называют затвором. По способу изоляции затвора различают два типа полевых транзисторов: с управляющим p-n -переходом, или с p-n-затвором, и изолированным затвором. Транзистор с управляющим затвором Истоком называется электрод, от которого начинают движение основные носители заряда в канале. Электрод, к которому движутся носители заряда, называется стоком. Управляющее напряжение прикладывают к третьему электроду, называемому затвором. Структура такого транзистора со схемой подачи напряжений и напряжений тока стока изображена на рисунке 4.13. Рисунок 4.13 - Структура полевого транзистора Принцип работы полевого транзистора с управляющим переходом основан на изменении сопротивления канала за счет изменения под действием обратного напряжения ширины области p-n-перехода, обедненной носителями заряда. Так как во входной цепи ток практически отсутствует, в такой структуре существует возможность усиления по мощности. Основными преимуществами полевых транзисторов с управляющим переходом являются высокое входное сопротивление, малые шумы, простота изготовления, отсутствие в открытом состоянии остаточного напряжения между стоком и истоком открытого транзистора. Полевые транзисторы с изолированным затвором отличаются от полевых транзисторов с управляющим p-n-переходом тем, что электрод затвора изолирован от полупроводниковой области канала слоем диэлектрика. Эти транзисторы имеют структуру металл – диэлектрик – полупроводник, и называется кратко МДП-транзисторами. Если в качестве диэлектрика используется оксид кремния, то их называют также МОП-транзисторами. МДП-транзисторы могут быть двух видов: с индуцированным каналом (канал наводится под действием напряжения, приложенного к затвору) и со встроенным каналом (канал создается при изготовлении). МДП-транзисторы с индуцированным каналом изображены на рисунке 4.14. Они выполнены на основе кристаллической пластинки 1 слабо легированного n -кремния, называемого подложкой П. В толще подложки созданы две сильно легированные области 2 с противоположным типом электропроводности p (или p +). Металлические пластинки 5 над ними с проволочными выводами являются электродами истока И и стока С. Поверхность кристалла между указанными областями покрыта диэлектрическим слоем диоксида кремния SiO 2 3, который изолирует электрод затвора 3 от области канала. На границе областей p у истока И – стока С образуется p-n -переходы, один из которых при любой полярности напряжения стока оказывается включенным в обратом направлении и препятствует протеканию тока I c. Рисунок 4.14 – Структуры МДП-транзисторов: а) с индуцированным каналом; б) со встроенным каналом В рабочем режиме транзистора канал 4 возникает (индуцируется) под воздействием соответствующего напряжения на затворе. При отрицательном напряжении затвора электрическое поле через диэлектрик проникает в глубь подложки, выталкивает из нее электроны и притягивает дырки (обогащает приповерхностный слой). При некотором напряжении, называемом пороговым U ЗИ1пор, между стоком и истоком образуется проводящий канал, имеющий такой же тип электропроводности, как и у стока и истока. Толщина канала (инверсного слоя) незначительная, дырки индуцированного канала «сжаты» в приповерхностном слое. Дырки, образующие канал, поступают в него не только из подложки, но также из слоев p -типа стока и истока. В транзисторах со встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. В зависимости от полярности напряжения на затворе канал может обогащаться дырками (сопротивление канала падает) либо обедняться, вплоть до прекращения тока – U ЗИотс. Полевые транзисторы успешно применяются в различных усилительных и переключающихся устройствах, их часто используют в сочетании с биполярными транзисторами. Элементы интегральных схем Основными элементами полупроводниковых интегральных схем (ИС) являются биполярные и полевые транзисторные структуры. В схемах, как правило, применяются планарные транзисторные элементы, у которых эмиттерные, базовые и коллекторные области выходят на одну сторону подложки. На этой же стороне подложки, на ее поверхности, располагается и контактные выводы от этих областей. Основой для изготовления ИС служит полупроводниковая пластина кремния с проводимостью p -типа, на которую наносят тонкий эпитаксиальный слой n -типа. В этом случае протравливают канавки для разделения отдельных элементов схемы. Путем диффузии в эпитаксиальный слой под канавками вводятся примеси p -типа, вследствие чего между созданной областью p -типа и примыкающими к ней участками эпитаксиального слоя n -типа образуются p-n- переходы, служащие для изоляции отдельных элементов схемы. С этой целью при работе схемы на подложку подают наибольший отрицательный потенциал, и p-n -переходы оказываются включенными в обратном направлении, т. е. между элементами отсутствует электрическая связь. Рисунок 4.15 – Поперечное сечение фрагмента микросхемы На оставшихся участках эпитаксиального слоя n-типа создают необходимые структуры для получения активных и пассивных элементов. Так, путем двойной диффузии может быть создана планарная p-n -структура с выводами от всех электродов в одной плоскости. При образовании полупроводниковой структуры большую роль играет пленка диоксида кремния, которая предохраняет поверхности от внешних воздействий. В промежуточных операциях по изготовлению полупроводниковой структуры эта пленка служит экраном, предохраняющим от диффузии примесей те участки, в которых необходимо сохранить прежний тип проводимости. В процессе изготовления полупроводниковых ИС широко используют метод фотолитографии, сущность которого кратко сводится к следующему. Поверхность пластины покрывают слоем фоторезиста — материала, чувствительного к ультрафиолетовому облучению. Затем пластину облучают через фотомаску, имеющую рисунок, соответствующий последующей технологической операции. Облученные участки фоторезиста после операции закрепления полимеризуются, поэтому на них не действуют травители, с помощью которых на необлученных участках удаляют слой диоксида кремния с фоторезистом. В дальнейшем производится диффузия примесей в протравленные «окна», покрытие слоем диоксида кремния и, если необходимо, снова слоем фоторезиста с последующим облучением через новую фотомаску и т. д. В ходе изготовления интегральной схемы обычно приходится использовать несколько фотомасок и выполнять соответственно несколько по существу одинаковых технологических операций. Однако число операций здесь примерно такое же, как и при изготовлении дискретного планарно-эпитаксиального транзистора, а число одновременно изготовляемых из одной пластины схем может быть достаточно велико, поэтому стоимость производства унифицированных ИС сравнима со стоимостью производства дискретных транзисторов. Лекция 5 Формы представления и преобразования информации 5.1 Общие принципы представления информации 5.2 Числовая система ЭВМ 5.3 Представление символьной информации в ЭВМ 5.4 Форматы данных
|
||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 380; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.238.150 (0.008 с.) |