Тема 1. Кинематика поступательного и вращательного движения. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 1. Кинематика поступательного и вращательного движения.



Учебно-методическое пособие

КОНСПЕКТ ЛЕКЦИЙ по физике

(для бакалавриата всех профилей)

 

 

Ростов-на-Дону

 

 
УДК 531.383

Учебно-методическое пособие. Конспект лекций по физике (для бакалавриата всех профилей). – Ростов н/Д: Рост. гос. строит. ун-т, 2012. – 103 с.

 

Содержится конспект лекций по физике, основанный на учебном пособии Т.И. Трофимовой «Курс физики» (изд-во Высшая школа).

Состоит из четырех частей:

I. Механика.

II. Молекулярная физика и термодинамика.

III. Электричество и магнетизм.

IV. Волновая и квантовая оптика.

Предназначено для преподавателей и студентов в качестве теоретического сопровождения лекций, практических и лабораторных занятий с целью достижения более глубокого усвоения основных понятий и законов физики.

Рекомендуется для самостоятельной работы студентов бакалавриата очной и заочной форм обучения всех профилей по направлениям:

270800 «Строительство»

270200 «Реконструкция и реставрация архитектурного наследия»

280700 «Техносферная безопасность»

190700 «Технология транспортных процессов»

190600 «Эксплуатация транспортно-технологических машин и комплексов»

230400 «Информационные системы и технологии»

230700 «Прикладная информатика»

120700 «Землеустройство и кадастр»

261400 «Технология художественной обработки материалов»

221700 «Стандартизация и метрология»

100800 «Товароведение»

УДК 531.383

Составители: проф. Н.Н.Харабаев

доц. Е.В.Чебанова

проф. А.Н. Павлов

 

Редактор Н.Е.Гладких

Темплан 2012 г., поз.

Подписано в печать

Формат 60х84 1/16. Бумага писчая. Ризограф. Уч.-изд.л. 4,0.

Тираж 100 экз. Заказ

_________________________________________________________

Редакционно-издательский центр

Ростовского государственного строительного университета

334022, Ростов-на-Дону, ул. Социалистическая, 162

© Ростовский государственный

строительный университет, 2012

ЧАСТЬ I. Механика

Тема 1. Кинематика поступательного и вращательного движения.

Тема 9. Механические волны

Процесс распространения колебаний в сплошной среде называется волной. Упругими (или механическими) называются волны, распространяющиеся в упругой среде. Упругие волны бывают продольные и поперечные.

В продольных волнах частицы среды колеблются в направлении распространения волны, а в поперечных – в плоскостях, перпендикулярных направлению распространения волны. Продольные волны могут возбуждаться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, то есть в твердых, жидких и газообразных телах.

Поперечные волны могут возбуждаться только в твердых телах, в которых возникают упругие деформации сдвига.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими.

На рис. 8 представлена гармоническая поперечная волна, распространяющаяся со скоростью вдоль оси х, то есть приведена зависимость смещения x частиц среды, участвующих в волновом процессе, от расстояния х от этих частиц до источника колебаний О для фиксированного момента времени t. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны l (рис. 8). Длина волны равна расстоянию, на которое распространяется волна за время, равное периоду колебаний T, т. е. .

 

 

Рис. 8

Геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым фронтом. Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Если волновые поверхности представляют собой совокупность плоскостей, параллельных друг другу, или совокупность концентрических сфер, то, соответственно, волна называется плоской или сферической.

Уравнение плоской волны, распространяющейся вдолположительного направления оси х имеет вид:

,

где А – амплитуда волны;

w – круговая (циклическая) частота;

фаза плоской волны;

j 0 начальная фаза волны, определяемая в общем случае выбором начала отсчета для х и для t.

Для характеристики волн используется волновое число k:

.

С учетом этого выражения для k, уравнение плоской волны примет вид:

.

 

Идеального газа.

Основное уравнение молекулярно-кинетической теории идеального газа связывает термодинамические параметры газа с параметрами, характеризующими движение его молекул. Так, давление газа, как следствие соударений молекул газа со стенками сосуда, определяется, согласно основному уравнению молекулярно-кинетической теории идеального газа, кинетической энергией поступательного движения молекул газа.

При выводе основного уравнения молекулярно-кинетической теории идеального газа полагают, что соударения молекул газа со стенками сосуда являются абсолютно упругими. Тогда, при соударении одна молекула газа массой m 0, движущаяся перпендикулярно стенке сосуда со скоростью , передает ей импульс .

Выделив на стенке сосуда элементарную площадку D S (рис. 1), определяют давление газа p на эту площадку. Построив цилиндр с основанием D S и высотой (рис. 1), учитывают, что число молекул, способных за время D t достигнуть площадки D S соответствует Рис. 1

1/6 части всех N молекул, содержащихся в объеме выделенного цилиндра (, где n – концентрация молекул). Коэффициент 1/6 учитывает, что из всех N молекул, движущихся хаотично вдоль трех (x, y, z) взаимно перпендикулярных направлений, только их 1/6 часть движется по направлению к площадке D S. Тогда число ударов молекул, движущихся в данном направлении, о площадку D S за время D t будет равно: .

При столкновении с площадкой D S эти молекулы передадут ей импульс D P:

,

что соответствует, согласно второму закону Ньютона, действию силы F:

.

Тогда давление газа, оказываемое им на стенки сосуда:

.

Однако, молекулы газа движутся с различными скоростями , ,…. , что можно учесть в полученной формуле, введя понятие средней квадратичной скорости движения молекул :

, тогда .

Так как , а – средняя кинетическая энергия движения одноатомной молекулы, то получим:

,

где Е – суммарная кинетическая энергия всех молекул газа, .

Таким образом, получены два эквивалентных уравнения:

и ,

связывающие кинематические параметры движения отдельных молекул газа с термодинамическими параметрами газа в целом, каждое из которых называют основным уравнением молекулярно-кинетической теории идеального газа.

Из сравнения между собой уравнений и следует, что

,

то есть еще одно уравнение, связывающее термодинамический параметр газа (Т) со средней кинетической энергией молекулы одноатомного газа .

С другой стороны, величина средней кинетической энергии молекул газа определяется температурой газа Т (для случая одноатомного газа):

.

Уравнение Майера.

Сравнение между собой Ср и СV приводит к уравнению Майера:

.

Это уравнение показывает, что Ср больше, чем СV на величину универсальной газовой постоянной R. Это объясняется тем, что при изобарном нагревании газа, в отличие от изохорного нагревания, требуется дополнительное количество теплоты на совершение работы расширения газа.

Таким образом, молярная теплоемкость газа определяется лишь числом степеней свободы и не зависит от температуры. Это утверждение справедливо в довольно широком интервале температур лишь для одноатомных газов.Уже у двухатомных газов число степеней свободы, проявляющееся в теплоемкости, зависит от температуры.

Тема 8. Уравнения Максвелла

Учебно-методическое пособие

КОНСПЕКТ ЛЕКЦИЙ по физике

(для бакалавриата всех профилей)

 

 

Ростов-на-Дону

 

 
УДК 531.383

Учебно-методическое пособие. Конспект лекций по физике (для бакалавриата всех профилей). – Ростов н/Д: Рост. гос. строит. ун-т, 2012. – 103 с.

 

Содержится конспект лекций по физике, основанный на учебном пособии Т.И. Трофимовой «Курс физики» (изд-во Высшая школа).

Состоит из четырех частей:

I. Механика.

II. Молекулярная физика и термодинамика.

III. Электричество и магнетизм.

IV. Волновая и квантовая оптика.

Предназначено для преподавателей и студентов в качестве теоретического сопровождения лекций, практических и лабораторных занятий с целью достижения более глубокого усвоения основных понятий и законов физики.

Рекомендуется для самостоятельной работы студентов бакалавриата очной и заочной форм обучения всех профилей по направлениям:

270800 «Строительство»

270200 «Реконструкция и реставрация архитектурного наследия»

280700 «Техносферная безопасность»

190700 «Технология транспортных процессов»

190600 «Эксплуатация транспортно-технологических машин и комплексов»

230400 «Информационные системы и технологии»

230700 «Прикладная информатика»

120700 «Землеустройство и кадастр»

261400 «Технология художественной обработки материалов»

221700 «Стандартизация и метрология»

100800 «Товароведение»

УДК 531.383

Составители: проф. Н.Н.Харабаев

доц. Е.В.Чебанова

проф. А.Н. Павлов

 

Редактор Н.Е.Гладких

Темплан 2012 г., поз.

Подписано в печать

Формат 60х84 1/16. Бумага писчая. Ризограф. Уч.-изд.л. 4,0.

Тираж 100 экз. Заказ

_________________________________________________________

Редакционно-издательский центр

Ростовского государственного строительного университета

334022, Ростов-на-Дону, ул. Социалистическая, 162

© Ростовский государственный

строительный университет, 2012

ЧАСТЬ I. Механика

Тема 1. Кинематика поступательного и вращательного движения.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 156; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.196.217 (0.031 с.)