Применение формулы Тейлора с остаточным членом в форме Лангранджа. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Применение формулы Тейлора с остаточным членом в форме Лангранджа.

Поиск

Пусть функция f(x) – два раза дифференцируема в О(х0), тогда

f(x)=f(x0)+f’(x0)(x-x0)+[f’’(c)(x-x0)2]/2 где с лежит между х и х0

 

уравнение касательной

 

Если |f’’(x)|£M "xÎO(x0)

f(x)-n+1 – дифференцируема в О(х0)

f(x)=Tn(x)+Rn(x)§ в О(х0)

n=1

T1(x) – линейная функция

n=2

- график парабола

|f(x)-T1(x)|=|f’(x0)||x-x0|

|f(x)-T2(x)|=[|f’’(x0)||x-x0|2]/2

T3(x)=ax3+bx2+cx+d – график кубическая парабола

 

 

Выпуклость и вогнутость.

Определение: Пусть функция f(x) – дифференцируема в

точке х0, то она называется выпуклой (вогнутой) в верх

в точке х0, если f(x)-yкас<0 в О(х0)

 

 

 
 


Определение: Пусть функция f(x) – дифференцируема в

точке х0, то она называется выпуклой (вогнутой) вниз в

точке х0, если f(x)-yкас>0 в О(х0)

 

 
 


Определение: Пусть функция f(x) – дифференцируема в

точке х0, то она называется выпуклой (вогнутой) в верх

(вниз) на интервале (a,b), если она выпукла в верх (вниз)

в каждой точке этого интервала.

Определение: (точки перегиба) Пусть функция f(x) диф-

ференцируема в О°(х0) и непрерывна в О(х0). Точка х0

называется точкой перегиба графика f(x), если при пере-

ходе через точку меняется знак выпуклости.

 

Теорема: (о достаточном условии выпуклости функции).

Пусть функция f(x) дважды дифференцируема в точке х0 и f’’(x0)<0 (f’’(x0)>0), тогда f(x) – выпукла вверх (вниз) в тоске х0.

Доказательство: Напишем формулу Тейлора с остаточным членом в форме пеано:

 

Если х близко к х0, то знак квадрата скобки определяется знаком f(x0). Если f’’(x0)<0, то f(x)-yкас>0 в О°(х0).

Если f’’(x0)>0, то f(x)-yкас>0 в О°(х0)

Теорема: Путь функция f(x) непрерывна в О(х0) и дважды дифференцируема в О°(х0), причём f’(x) меняет знак при переходе через точку х0, тогда точка х0 – точка перегиба.

Доказательство:

 

f’’(x) - +

(·) x

x0

f’’(x)<0 в O°-(x0)Þ f(x) – выпукла вверх в О°-0)

f’’(x)>0 в O°+(x0)Þ f(x) – выпукла вниз в О°+0)

Следствие: Если f(x) дважды дифференцируемы в точке х0. Если точке х0 точка перегиба, то f’’(x0)=0

Путь точка х0 точка перегиба и существует f’’(x0)>0, тогда

то есть при переходе через точку х0 левая часть равенства f(x)-yкас не меняет знак. Аналогично получаем для f(x)>0 f’’(x0)=0

Замечание: Условие равенства f’’(x0)=0 необходимо, но недостаточно.

Теорема: (о достаточном условие экстремума по второй производной)

Пусть функция f(x) дважды дифференцируема в точке х0, тогда точка х0 точка максимума если f’’<0, точка х0 точка минимума если f’’(x0)>0.

Доказательство:

При х достаточно большим и х0 знак в квадратных скобках совпадает со знаком f’’(x0)Þ f(x)-f(x0)>0 в О°(х0), если f’’(x0)>0 то есть f(x)>f(x0) в О°(х0)Þ х0 точка минимума, если f(x)-f(x0)<0 в О°(х0), и если f’’(x0)<0 то есть f(x)<f(x0) в О°(х0)Þ х0 точка максимума.

Замечание: Если f’(x0)=0 и f’’(x0)=0, то нужны дополнительные исследования.

 


Лекция №17

Тема: Асимптоты. Полное исследование функции.

Асимптоты.

1. Вертикальные

1.1 Пусть функция f(x) определена в , тогда прямая х=х0 называется правой вертикальной асимптотой для функции f(x)

1.2 Пусть функция f(x) определена в , тогда прямая х=х0 называется левой вертикальной асимптотой для функции f(x)

2. Наклонные асимптоты

2.1 Пусть функция f(x) определена в , тогда прямая y=kx+b называется правой наклонной асимптотой для функции f(x). (Если k=0, то говорят, что y=b – горизонтальная асимптота).

2.2 Пусть функция f(x) определена в , тогда прямая y=kx+b называется левой наклонной асимптотой для функции f(x).



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 158; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.34.148 (0.01 с.)