Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Кинетическая энергия при плоском движенииСодержание книги
Поиск на нашем сайте
Плоским (плоскопараллельным) называется такое движение, при котором все точки тела движутся в параллельных плоскостях. Представим плоское движение тела как поступательное движение со скоростью , некоторой точки 0 в нем и вращения вокруг оси, проходящей через эту же точку и перпендикулярной с угловой скоростью . В этом случае скорость i -той материальной точки тела определяется формулой . Кинетическая энергия i - той материальной точки равна или . Просуммировав по всем материальным точкам, получим или , (12) где М - полная масса тела, - радиус-вектор центра масс, - момент инерции тела относительно оси, проходящей через точку О. Если в качестве точки О взять центр масс тела С, то и формула (12) упрощается: . (13) Таким образом, если разбить плоское движение тела на поступательное со скоростью центра масс V c и вращательное с угловой скоростью w вокруг оси, проходящей через центр масс тела, то кинетическая энергия распадается на два независимых слагаемых, одно из которых определяется только скоростью центра масс V c, а другое - угловой скоростью w. Из (13) следует, что при вращении тела относительно оси z, проходящей через центр масс С, его кинетическая энергия . (14) Пе́рвая косми́ческая ско́рость (кругова́я ско́рость) — минимальная скорость, которую необходимо придать объекту, чтобы вывести его на геоцентрическую орбиту. Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отсчета — относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения. Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил. Точнее, на тело действует одна сила - сила тяготения, она же - центростремительная. Центробежная сила действует на Землю. Центростремительная сила, вычисляемая из условия вращательного движения равна силе тяготения. Отсюда, приравнивая эти формулы, вычисляется скорость. , , где m — масса объекта, M — масса планеты, G — гравитационная постоянная, — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 371 км), найдем 7,9 км/с
Втора́я косми́ческая ско́рость — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массойнебесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него. Предполагается, что после приобретения телом этой скорости оно более не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует). Запишем закон сохранения энергии где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния — энергия равна нулю). Здесь m — масса пробного тела, M — масса планеты, R — радиус планеты, G —гравитационная постоянная, v — вторая космическая скорость.Решая это уравнение относительно v 2, получим
|
||||
Последнее изменение этой страницы: 2017-02-06; просмотров: 281; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.132.178 (0.006 с.) |