Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Основные положения клеточной теории, ее значение
Содержание книги
- Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого. Химический состав клетки.
- Основные положения клеточной теории, ее значение
- Клеточный цикл, его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине.
- Строение днк. Модель днк уотсона-крика. Нуклеотиды, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.
- Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-рнк. Геном человека.
- Гаметогенез и Мейоз: цитологическая и цитогенетическая характеристика. Биологическое значение мейоза. Сходства и отличия митоза и мейоза.
- Отличие овогенеза от сперматогенеза. Морфология семенников и яичников.
- Характеристика основных этапов оплодотворения. Биологическое значение оплодотворения. Половой диморфизм. Партеногенез.
- Эмбриональная индукция. Дифференциация и интеграция в развитии. Молекулярно-генетические механизмы дифференцировки
- Эмбриональная индукция. Дифференциация и интеграция в развитии. Вклад Г. Шпемана, Г. В. Лопашова и дж. Гердона.
- Роль наследственности и среды в онтогенезе. Способы их оценки. Близнецовый метод, коэффициент наследственности. Критические периоды развития. Тератогенные факторы среды.
- Биологические ритмы. Классификация. Параметры ритма. Значение биологических ритмов для медицины. Хрономедицина, хронодиагностика и хронотерапия
- Определение старения. Периодизация жизни человека. Биология продолжительности жизни. Теории старения (авторы, суть теорий).
- Гипотеза «волчка». Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.
- Цели и задачи хронобиологии и хрономедицины. Классификация ритмов и природа ритмов. Эндогенные ритмы и доказательство эндогенной природы активных ритмов. Опыт Ж. Де мейрана. Правило Ю. Ашоффа.
- Предмет, задачи, методы генетики. Этапы развития генетики. Вклад ученых в развитие генетики. Значение генетики для медицины.
- Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Тест полового хроматина и его применение в медицине.
- Наследственность и изменчивость – фундаментальные свойства живого, их диалектическое единство.
- Наследование групп крови и резус-фактора. Практическое значение.
- Основные методы изучения генетики человека (генеалогический, онтогенетический, цитогенетический, близнецовый, популяционный).
- Болезни с нетрадиционным наследованием. Митохондриальные болезни. Наследованием нЕвропатии лебера.
- Генная инженерия. Программа «геном человека». Алгоритм генной инженерии. Понятие о генетических векторах. Генная терапия.
- Модификационная изменчивость. Норма реакции генетически детерминированных признаков. Фенокопии. Адаптивный характер модификаций. Взаимодействие среды и генотипа в проявлении признаков человека.
- Мутационная теория канцерогенеза
- Генные мутации. Сущность и механизм возникновения молекулярно-наследственных болезней человека (фенилкетонурия, серповидно-клеточная анемия и др.)
- Сущность молекулярных наследственных болезней человека (фенилкетонурия, серповидноклеточная анемия, болезнь Вильсона, муковисцидоз и др.). Возможность их профилактики и лечения.
- Методы диагностики паразитарных болезней
- Многожгутиковые представители класса жгутиковых. Биология, пути заражения, патогенное значение, диагностика, профилактика заболеваний.
- Диагностические признаки, систематика, биология переносчиков малярии.
- Характеристика гельминтов – паразитов человека Тюменской области. Транзитные гельминтозы: токсокароз и анизакиаз.
- Характеристика отряда Cyclophyllidea. Эхинококк и альвеококк. Морфология, циклы развития, пути заражения, диагностика, профилактика. Отличие личиночных стадий.
- Круглые черви. Характерные черты организации. Циклы развития. Медицинское значение.
- Комары. Строение, сравнительная характеристика стадий развития представителей рода Anopheles и Culex; циклы развития, медицинское значение, меры борьбы.
- Вольфартова муха и оводы. Морфология, эпидемиологическое значение, меры борьбы.
- Морфологические особенности, биология, эпидемиологическая роль большой и малой комнатной мухи.
- Вши. Морфология, развитие, эпидемиологическое значение, меры борьбы.
- Биотические факторы. Цепи питания. Правило экологической пирамиды. Концепция биогеоценоза. Экологическая сукцессия и климакс.
- Аутэкологические понятия и законы. Пути адаптации организма к окружающей среде (толерантный и резистентный пути). Правило оптимума и минимума.
- Экосистема, биоценоз, антропобиоценоз. Продуценты, консументы, редуценты. Пищевые цепи.
- Статические показатели популяций
- Демэкология. Виды популяций. Типы пространственного распределения особей в популяциях (равномерный, диффузный, агрегированный). Экологическая дифференциация человечества.
- Человек как творческий экологический фактор. Основные направления и результаты антропогенных изменений в окружающей среде. Антропогенные экосистемы. Проблема «светового загрязнения»
- Доказательства единства органического мира на молекулярном, клеточном и других уровнях организации всего живого. Значение теории эволюции Для развития медицины.
- Теория эволюции Ч. Дарвина. Естественный отбор. Формы естественного отбора. Творческая роль естественного отбора в эволюции.
- Элементарные эволюционные факторы. Мутационный процесс и генетическая комбинаторика. Популяционные волны, изоляция, дрейф генов, естественный отбор. Взаимодействие элементарных эволюционных факторов.
- Микро - и макроэволюция. Характеристика механизмов и основных результатов.
- Учение А.Н. Северцова и биологическом прогрессе
- Соотношение онто- и филогенеза. Закон зародышевого сходства. Биогенетический закон. Ценогенезы и филэмбриогенезы по А. Н. Северцову.
- Филогенетические связи в природе. Естественная классификация живых форм. Основные типы животного мира. Доказательства монофилии. Эволюционно-обусловленные уровни организации жизни.
- Филогенез выделительной системы. Пронефрос. Мезонефрос. Метанефрос.
Похожие статьи вашей тематики
Все живые организмы состоят из клеток — из одной клетки (одноклеточные организмы) или многих (многоклеточные). Клетка — это один из основных структурных, функциональных и воспроизводящих элементов живой материи; это элементарная живая система. Существуют неклеточные организмы (вирусы), но они могут размножаться только в клетках. Существуют организмы, вторично потерявшие клеточное строение (некоторые водоросли). История изучения клетки связана с именами ряда ученых. Р. Гук впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые и назвал клетками. Антони ван Левенгук впервые увидел клетки под увеличением в 270 раз. М. Шлейден и Т. Шванн явились создателями клеточной теории. Они ошибочно считали, что клетки в организме возникают из первичного неклеточного вещества. Позднее Р. Вирхов сформулировал одно из важнейших положений клеточной теории: «Всякая клетка происходит из другой клетки...» Значение клеточной теории в развитии науки велико. Стало очевидно, что клетка — это важнейшая составляющая часть всех живых организмов. Она их главный компонент в морфологическом отношении; клетка является эмбриональной основой многоклеточного организма, т.к. развитие организма начинается с одной клетки — зиготы; клетка — основа физиологических и биохимических процессов в организме. Клеточная теория позволила прийти к выводу о сходстве химического состава всех клеток и еще раз подтвердила единство всего органического мира. ^ Современная клеточная теория включает следующие положения: -клетка — основная единица строения и развития всех живых организмов, наименьшая единица живого; -клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; -размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки; -в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции. ^ Значение клеточной теории в развитии науки состоит в том, что благодаря ей стало понятно, что клетка – это важнейшая составляющая часть всех живых организмов. Она их главный «строительный» компонент, клетка является эмбриональной основой многоклеточного организма, т.к. развитие организма начинается с одной клетки – зиготы. Клетка – основа физиологических и биохимических процессов в организме, т.к. на клеточном уровне происходят, в конечном счёте, все физиологически и биохимические процессы. Клеточная теория позволила придти к выводу о сходстве химического состава всех клеток и ещё раз подтвердила единство всего органического мира. Все живые организмы состоят из клеток – из одной клетки (простейшие) или многих (многоклеточные). Клетка – это один из основных структурных, функциональных и воспроизводящих элементов живой материи; это элементарная живая система. Существует эволюционно неклеточные организмы (вирусы), но и они могут размножаться только в клетках. Различные клетки отличаются друг от друга и по строению, и по размерам (размеры клеток колеблются от 1мкм до нескольких сантиметров – это яйцеклетки рыб и птиц), и по форме (могут быть круглые как эритроциты, древовидные как нейроны), и по биохимическим характеристикам (например, в клетках, содержащих хлорофолл или бактериохлорофилл, идут процессы фотосинтеза, которые невозможны при отсутствии этих пигментов), и по функциям (различают половые клетки – гаметы и соматические – клетки тела, которые в свою очередь подразделяются на множество разных типов).
6. Клетка как открытая система. Организация потоков вещества, энергии в клетке. Специализация и интеграция клеток многоклеточного организма. Клетка — открытая система, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Жизнедеятельность клетки обеспечивается процессами, образующими три потока: информации, энергии веществ. Благодаря наличию потока информации клетка приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, передает в ряду поколений. В этом потоке участвуют ядро, макро молекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). Позже полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру, и используется в качестве катализаторов или структурных белков. Также функционируют геномы митохондрий, а в зеленых растениях — и хлоропластов. Поток энергии обеспечивается механизмами энергообеспечения — брожением, фото — или хемосинтезом, дыханием. Дыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, регуляторную. Анаэробный гликолиз — процесс бескилородного расщепления глюкозы. Фотосинтез — механизм преобразования энергии солнечного света в энергию химических связей органических веществ.
|