Аномалии птиц. Наследственная обусловленность и их влияние на продуктивность. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Аномалии птиц. Наследственная обусловленность и их влияние на продуктивность.



Наследственные аномалии, обусловленные мутантными летальными и полулетальными генами, у птиц хорошо изучены.

Проявляются аномалии в форме изменений в строении скелета, конечностей, клюва, изменения оперения, функциональных нарушений.

Карликовость. Среди генетических аномалий кур установлено большое разнообразие форм карликовости:

микромелия - «клюв попугая» - характеризуется укороченными и утолщенными конечностями, затруднениями при вылуплении цыплят, часто обнаруживают в породе леггорн;

хондродистрофия — укорочение трубчатых костей, «клюв попугая», а в легкой форме «клюв попугая» отсутствует, описана у красных родайлеров;

карликовость - укороченная верхняя часть клюва, перекрученные ноги, кривошея;

тиреогеиная карликовость — «клюв попугая», укорочение конечностей, пальцы выгнуты наружу;

наномелия — сильная гипоплазия конечностей, брахицефалия, «клюв попугая», гибель зародыша наступает к концу инкубации;

амеоподия - редукция ног и крыльев, зарегистрирована у леггорнов;

коротконогость - у гетерозигот отмечается укорочение конечностей, а гомозиготы погибают на 4-е сутки инкубации.

Нарушения нервной системы. Несколько аномалий птиц связаны с нарушениями нервной системы:

атаксия - цыплята не могут стоять, кривошея, описана у ныо-гемпширов и суссексов;

врожденное дрожание - вылупившиеся цыплята дрожат, выживаемость их низкая, доминантный признак описан у леггорнов;

дрожание, или вибрирование, - отмечаются запрокидывание головы и встряхивание ею, кривошея;

трясучка - вибрирующие движения выражены не так резко, как в предыдущей форме;

сонливость - отмечаются вялость и сонливость, одышка и титанические судороги;

пароксизм - возникают угнетение роста, тетания, дрожание, последние два дефекта наследуются как сцепленные с полом аномалии.

Разные аномалии. К наследственным уродствам относятся различные типы полидактилии (многопалости), многие из аномалий лицевых костей - отсутствие или укороченность верхней, нижней или обеих челюстей, перекрещивание челюстей и другие сочетаются с недоразвитием глаз.

Отдельные мутации обусловливают гибель во время инкубации или во время роста на 23—123-е сутки. Обнаруживают нарушение в соотношении полов, что указывает на сцепленное с Х-хромосомой наследование. Выводимость яиц или вывод цыплят при этом резко снижены.

К наследственным аномалиям птиц относят неспособность к вылуплению. У кур корнуэльской породы этот летальный фактор наследуется по доминантному типу.

Частота генетических аномалий у птиц, как и у других видов животных, резко возрастает при родственном разведении.

25. Аберрации хромосом у свиней и их влияние на фенотип и продуктивность.

В разных породах свиней установлено распространение реципрокных транслокаций хромосом.

Выявлены 16 различных вариантов этого типа аберраций. Для большинства из них установлено резко выраженное отрицательное влияние на плодовитость животных (табл. 12).

Таким образом, в свиноводстве большое значение имеет цитогенетический контроль, позволяющий предупреждать распространение реципрокных транслокаций. Особенно необходимо проверять кариотипы тех хряков, при использовании спермы которых регистрируют высокий процент прохолостов маток или малочисленный помет. Выявленных носителей реципрокных транслокаций следует браковать, а их приплод исключать из воспроизводства.

 

Генетические болезни крс

Биологическими особенностями данного вида животных являются малоплодие и относительная позднеспелость. Корова обычно приносит одного теленка, который достигает зрелости только к полутора годам. У крс изучен широкий спектр врожденных аномалий, детерминированных летальными, сублетальными, полулетальными и субвитальными генами.

Относительная частота отдельных типов аномалий в каждой породе или популяции может быть различной. В костромской породе – укорочение челюсти наблюдается чаще всего, в ярославской породе – синдактилия.

Второе место по частоте регистрации занимала комплексная аномалия – сочетания пупочных грыж с расщеплением брюха и плода в целом.

Особую роль в распространении генетических аномалий могут играть производители. От каждого производителя при искусственном осеменении в год можно получить сотни и тысячи потомков. Так, от одного быка получили 100 тыс. телят. Если такой производитель окажется носителем генной мутации, то она быстро распространится в породе.

 

44.

Микросателлиты (или простые короткие (тандемные) повторы) — варьирующие локусы в ядерной ДНК и ДНК органелл (митохондрий и пластид), Состоящие из повторяющихся фрагментов длиной от 1 до 6 пар нуклеотидов. Используются как молекулярные маркеры в определении родства, принадлежности к конкретной популяции, для исследования гибридизации. Также используются для поиска паралогов.

Гомологичные последовательности называют паралогичными, если к их разделению привело удвоение гена: если в пределах одного организма в результате хромосомной мутации произошло удвоение гена, то его копии называют паралогами.

 

45.

Принципы и методы.

- Путем заражения животного бактериями болезни или яйцами паразитов с последующим выведением поколений с устойчивостью к болезни.

- Возможна без заражения, если известны косвенные признаки (маркеры), указывающие на устойчивость или восприимчивость животного к болезни.

 

Устойчивость к пуллурозу(тиф) – поражение кишечника, паренхиматозных органов у молодняка и яичников у взрослой птицы.

Искусственное заражение кур двух линий породы белый леггорн. Цыплят заражали возбудителем с последующим выяснение процента выживаемости и дальнейшем его повышении.

Хатт. Повышал температуру тела при вылуплении до температуры тела взрослой птицы. Наиболее устойчивы те, у кот. Температура тела повышается быстро.

К эймериозу(кокцидиозу) – тем же методом заражением ооцистами.

Порода все таже – белый леггорн.

 

46.

Кариотип КРС – 60 хромосом

Транслокации между 1 и 29 аутосомами. Снижает плодовитость крс, снижает молочную продуктивность, поэтому их раньше выбраковывают. У гетерозисных носителей образ гаметы с несбалансированным набором хромосом. Немецкая черно-пестрая в Германии. Симментальской(Россия Венгрия, Германия, Швейцария.). Шароле(Франц.), Лимузин (Франц., Англия.)

25\27 – снижает плодовитость (Альпийский скот)

1\29 – снижает плодовитость (Симментальская, Серая Альпийская)

 

47.

Кариотип свиньи – 38 хромосом.

Реципрокные транслокации – снижают плодовитость (гибель эмбриона), продуктивные качества (прирост массы, признаки мясистости)

Причина – нарушение мейоза.

Реципрокная транслокация Т в гетерозисном состоянии. Гетерозисных хряков скрестили с 10 норм. Свинками. 14 – нормальный сбалансированный набор хромосом. 11 – сбалансированный, но гетерозиготный по транслокации, 11 – несбалансированный(с изменением числа хромосом – трисомия, моносомия)

Шведская Йоркширская порода свиней.

 

48.

1. спаривание проверяемого производителя с аномальными самками (анализирующее крещивание)

2. спаривание проверяемого производителя с самками, о которых известно, что они являются гетерозиготными носителями мутантного гена.

3. спариванием проверяемого производителя с собственными дочерями (инцест-тест)

4. спариванием с дочерями известных гетерозиготных производителей

5. спариванием производителя с самками неизвестного генотипа

 

49.

Гены - модификаторы – не имеют собственного влияния на признак, однако изменяют действие др генов из неаллельных пар, тем самым вызывая модификаторы (изменения) простых признаков. 9:3:4 (F2).

Формирование у жив. Резистентности к инфекционным болезням. (скот герефордской породы имеет белую голову, в содержании пастбищных условиях с сильным солнечным воздействием болеют раком глаз. При усиленной пегментации частота заболевания уменьшается.)

50.

Физические мутагены.

Ионизирующее излучение, ультрафиолетовые лучи и повышенная температура.

В результате облучения. Образ. Свободные радикалы водорода (Н) и гидроксила (ОН), которые дают новые соединения в том числе и пероксид водорода (Н2О2) Такие превращения в молекулах ДНК и кариотипе в итоге приводят к изменению функций ген. Аппарата клеток, абберациям хромосом и возникновению точковых мутаций. Под действие ионизирующих излучений чаще всего возникают структурные перестройки хромосом и реже- генные мутации. (часть облученных половых клеток оказывается нежизнеспособны и с умеренными нарушениями. Облучали морских свинок и домашних свиней.) Ионизирующие облучения могут нарушить процессы деления в соматических клетках, возникают нарушения и злокачественные образования. Сильное облучение может вызвать смерть.

Источники – взрывы атомных и водородных бомб (излучения)

Химические мутагены. Алкилирующие соединения (диметилсульфат, фотрин, фосмедин) Азотистая к-та. Пестициды, гербицыды. Минеральные удобрения – нитраты.

Особенность – передача и аккумуляция при делении клеток в последующей генерации, более высокая частота индуцирования генных мутаций, чем аббераций хромосом. Хим. Мутагены дают широкий спектр видимых хромосомных аббераций.

 

51.

Цитогенетический анализ – позволяет выявлять как числовые, так и структурные мутации кариотипа, снижающие жизнеспособность, плодовитость, продуктивность и племенную ценность животных.

Эффективная профилактика вредных последствий хромосомных и геномных мутаций может быть выявлена отбором на станциях по искусственному осеменению производителей без нарушений в кариотипе. Выбраковка мутантных производителей или их спермы – способ профилактики дальнейшего увеличения частоты транслокаций в породе, метод повышения выхода телят, производства мяса и молока в хозяйствах.

 

52. ПОПУЛЯЦИЯ И ЧИСТАЯ ЛИНИЯ. Популяция – совокупность особей одного вида, в течение длительного времени (большого числа поколений) населяющая определенное пространство, состоящая из особей, способных свободно скрещиваться друг с другом, и отдельная от таких же соседних совокупностей одной из форм изоляции (пространственной, сезонной, физиологической, генетической). Чистая линия – потомство, полученное только от одного родителя и имеющее с ним полное сходство по генотипу. Генофонд – совокупность аллелей, входяцих в остов популяции. Методы его оценки: иммунологический, биохимический, физиологический, молекулярный. СТРУКТУРА СВОБОДНО РАЗМНОЖАЮЩЕЙСЯ ПОПУЛЯЦИИ.ЗАКОН ХАРДИ-ВАЙНБЕРГА. Такая популяция находится в состоянии равновесия по соотношению генотипов. Закон или правило Харди-Вайнберга: при отсутствии факторов, изменяющих частоты генов, популяции при любом соотношении аллелей от поколения к поколению сохраняют эти частоты аллелей постоянными. Популяция находится в равновесии только тогда, когда в ней не происходит отбора. При выбраковке же отдельных животных в такой популяции изменяется соотношение гамет, что влияет на ген структуру следующего поколения. При использовании в популяции случайных, неотобранных производителей или маток наблюдается стабилизация признаков продуктивности на одном уровне и повышение продуктивности животных в такой ситуации невозможно. При отсутствии браковки гетерозиготных носителей рецессивных аномалий частота появления аномальных животных в популяции остается неизменной. Формула p2AA+2pgAa+g2aa=1, где р-частота доминантного гена А, g-частота его рецессивного аллеля а, можно рассчитать структуру популяции и определить частоты гетерозигот, проанализировать сдвиги в генных частотах в результате отбора, мутаций и других факторов.

53. ОСНОВНЫЕ ФАКТОРЫ ГЕН. ЭВОЛЮЦИИ В ПОПУЛЯЦИИ. В популяциях с/х животных постоянно изменяются частоты генов. Такие изменения составляют суть генетической эволюции. Основными факторами эволюции являются мутации, естественный и искусственный отбор, дрейф генов. С точки зрения ветеринарной генетики имеет значение эффективность отбора против вредных мутаций, прежде рецессивного типа. Генетическая структура популяции может изменяться в силу случайных генетико-автоматических процессов или дрейфа генов. Наиболее интенсивно дрейф генов протекает в малых популяциях.

54. Иммунный ответ, или иммунологическая реактивность, - высокоспецифическая форма реакции организма на чужеродные вещества (антигены). При иммунном ответе происходят распознавание чужеродного агента. При введении антигена возникает первичный иммунный ответ - через 2 дня в крови образуются антитела, титр которых возрастает, достигает максимума, а затем падает. Вторичный иммунный ответ возникает на повторное введение того же антигена и характеризуется более высоким и быстрым нарастанием титра антител. Подобная реакция более усиленного образования антител на повторное введение антигена – иммунологическая память При вирусной инфекции ДНК или РНК вируса попадает в клетку, а вирусные белки остаются на клеточной мембране. Цитотоксические Т-киллеры своими рецепторами узнают вирусные антигены только в комбинации с белком главного комплекса гистосовместимости МНС класса 1.В отличие от антител Т-рецепторы не узнают и не связывают антиген, если тот не находится вместе с белком МНС. После узнавания антигенов цитотоксические Т-клетки убивают зараженные вирусом клетки. Мутации любых локусов, обусловливающие разные звенья иммунной системы организма, влияют на иммунный ответ. Гены иммунного ответа. Гены, кодирующие иммунный ответ, наз-ся генами иммунного ответа Высота иммунного ответа детерминирована многими генами иммунного ответа, обозначаемыми Iг-1, Iг-2 и т. д. Контроль иммунного ответа осуществляется Iг-генами путем контроля синтеза Iа-белков. Во многих случаях иммунный ответ против антигенов наследуется полигенно. Гены иммунного ответа: 1) Ir-гены определяют количество синтезируемых антител против определенных антигенов; 2) Ir-гены не сцеплены с локусами, кодирующими иммуноглобулины; 3) Ir-гены высокоспецифичны. 4) между генами, контролирующими высокий или низкий иммунный ответ против различных антигенов, в основном не существует никакой связи. Теории иммунитета: 1) клонально-селекционная теория Ф. Бернета (1959). Она основана на четырех основных принципах: а) в организме имеется большое число лимфоидных клеток; б) популяция лимфоидных клеток гетерогенна, и в результате интенсивного деления клеток образуется большое число клонов; в) небольшое количество антигена стимулирует клон клеток к размножению; г) большое количество антигена элиминирует соответствующий клон. 2) Сетевая теория. Согласно неё антитела не только узнают антиген, но и сами являются антигенами.

55. Типы взаимодействия неаллельных генов. Неаллельные гены – гены, расположенные в разных парах гомологичных хромосом и влияющие на один признак. Комплементарность:1.эпистаз, 2.комплиментарность, 3.новообразование, 4.полимерия, 5.гены-модификаторы.

Комплиментарность:при таком типе взаимодействия необходимо наличие двух доминантных генов, кот.дополняют др.др., а самостоятельно каждый отдельный ген не формирует признак.Нап: серая окраска у мышей(А-черн,а-нет пигмента,В-зонарное,в-сплошное).

Эпистаз:доминантный ген одной пары аллели подавляет действие другого доминантного гена, неаллельного первому.Тот ген,кот. Подавляет наз.эпистатический, а который подавляется- гипостатический.Нап: C-серая масть подавляет действие другого домин. Гена В-вороная масть, тогда ссвв-рыжая окраска.Полимирия:когда на проявление признака оказывает влияние несколько однозначно действующих генов.Нап: длина ушей, L- увеличение на 2 см.

56. ЛЕКАРСТВЕННЫЕ ПРЕПАРАТЫ И МУТАГЕНЕЗ. Многие лекарственные препараты, используемые в медицине и ветеринарии (производные миозинового ряда, нитрофураны и др.), обладают мутагенными св-вами. В связи с этим необходима проверка каждого нового фармакологического ср-ва на мутагенность, строгое соблюдение инструкций по применению лечебных препаратов – стимуляторов роста животных, различных ядохимикатов и всякого рода токсических вещ-в. Мутаген – фактор, вызывающий мутацию. Классы: физические (основными мутагенами явл-ся ионизирующие излучения, ультрафиолетовые лучи и повышенная температура. К группе ионизирующих излучений относят рентгеновы лучи, γ-лучи и β-частицы, протоны, нейтроны. Ионизирующие излучения, проникая в клетки, на своем пути вырывают электроны из молекул, что приводит к образованию положительно заряженных ионов. Освободившиеся электроны присоединяются к другим молекулам, кот становятся отрицательно заряженными. В рез-те облучения клеток образуются свободные радикалы водорода (Н) и гидроксила (ОН), кот дают соединение Н2О2. Такие превращения в молекулах ДНК и кариотипе в приводят к изменению функций генетического аппарата клеток, возникновению точковых мутаций. Ионизирующие облучения могут нарушить процессы деления в соматических клетках, вследствие чего возникают нарушения и злокачественные образования), химические (это вещества химической природы, способные индуцировать мутации: алкилирующие соединения (диметил- и диэтилсульфат, фотрин), аналоги азотистых оснований и нуклеиновых кислот (кофеин), красители (акридин желтый и оранжевый), азотистая кислота, пероксиды, пестициды, минеральные удобрения (нитраты). Химические мутагены индуцируют генные и хромосомные мутации) и биологические (это простейшие живые организмы, вызывающие мутации у животных: вирусы, бактерии. Биологические мутагены вызывают широкий спектр мутаций в клетках животных (хромосомные).

57. Аутосомно-рецессивный тип наследования. Заболевания с аутосомно-рецессивным типом наследования проявляются только при гомозиготном носительстве мутантных аллелей. При этом происходит частичная или полная инактивация функции мутантного гена. Одну из мутаций детеныш наследует от матери, другую, точно такую же - от отца. В общем случае родители больного, будучи практически сами здоровыми, являются гетерозиготными носителями мутации, которую они оба передали (наследовали) своему потомству. Вероятность рождения больного потомства в соответствии с законом Менделя составляет 25%. Самки и самцы поражаются с одинаковой частотой. Рождение больного детеныша совершенно не зависит от возраста родителей, очередности беременности и родов. Анализ родословных больных животных с аутосомно-рецессивными заболеваниями показывает, что часто (примерно в 60%) родители таких больных являются родственниками или происходят от одного предка предки, это косвенно показывает что инбридинг имел место быть.

58. Под генетическими маркерами понимают любые наследуемые фенотипические признаки, различающиеся у отдельных особей. Фенотипические признаки, отвечающие требованиям генетических маркеров, весьма разнообразны. Они включают в себя как особенности поведения или предрасположенность к определенным заболеваниям, так и морфологические признаки целых организмов или их макромолекул, различающихся по структуре. Молекулярные маркеры используются при построении генетических карт сцепления.

59. Трансдукция – перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Трансдуцируется один ген, реже 2 и очень редко 3 сцепленных гена. При переносе генетического материала заменяется участок молекулы ДНК фага. Фаг при этом теряет свой собственный фрагмент и становится дефективным. Включение генетического материала в хромосому бактерии реципиентов осуществляется механизмом типа кроссинговера. Происходит обмен наследственным материалом между гомологичными участками хромосомы реципиента и материала, привнесённого фагом. Различают три вида трансдукции: неспецифическую, специфическую и абортивную. При неспецифической трансдукции в период сборки фаговых частиц в их головку вместе с фаговой ДНК может включиться любой из фрагментов ДНК поражённой бактерии. При специфической трансдукции профаг включается в определённое место хромосомы бактерии и трансдуцирует определённые гены, расположенные в хромосоме клетки донора рядом с профагом. Абортивная трансдукция - фрагмент хромосомы донора, перенесённый в клетку реципиента, не всегда включается в хромосому реципиента, а может сохраняться в цитоплазме клетки (только в одну из дочерних клеток). Трансформация – поглощение изолированной ДНК бактерии донора клетками бактерии реципиента. В процессе трансформации принимают участие 2 бактериальные клетки: донор и реципиент. Трансформирующий агент представляет собой часть молекулы ДНК донора, которая внедряется в генотип реципиента, изменяя его фенотип. Из клеток донора выделяются в окружающую среду молекулы или фрагменты молекул ДНК. Сначала эта ДНК адсорбируется на оболочке клетки реципиента. Затем через определённые участки её стенки при помощи специальных клеточных белков ДНК втягиваются внутрь клетки. В реципиентной клетке она становится одноцепочной. В ДНК реципиента включается одна из цепей трансформирующего фермента. Эта цепь вступает в синопсис с гомологичным участком хромосомы реципиента и встраивается в неё посредством кроссинговера. При этом участок ДНК реципиента замещается ферментом донора. Молекула ДНК со вставкой трансформирующего участка оказывается гибридной. При следующем удвоении возникают одна нормальная дочерняя молекула ДНК, другая - трансформированная. Установлено, что способность бактерий – реципиентов к трансформации определяется их физиологическим состоянием. Такое физиологическое состояние называется компетентностью. Трансформирующей способностью обладает только крупные молекулы ДНК. У бактерий сохранилась гомологичность некоторых участков ДНК.

 

Схемы сцепленного с полом наследования. Примеры сцепленных с полом аномалий у животных.

1)Сцепленный с полом доменантный.

Каждый аномальный потомок имеет аномального родителя. Аномалия прослеживается в каждом поколении. Если болен отец, то все его дочери- больны, а сыновья – здоровы. При скрещивании больной нетерозиготной самки со здоровым самцом вероятность появления больного потомка = 50%, вне зависимости от пола. Болеют самцы и самки, но больных самок в два раза больше,чем больных самцов.

2) Сцепленный с полом рецессивный.

От нормальных родителей рождается аномальный потомок, причём это сын. Если больна самка, то отец её обязательно болен и будут больны все её сыновья. При скрещивании нормальной гомозиготной самки с больным самцом все потомки будут нормальными, но у дочерей могут быть больные сыновья. При скрещивании нормальных родителей вероятность рождения больного потомка = 50% для самцов, для самок =40%.

Примеры: у КРС врожденная деформация передних конечностей в сочетании с анкилозом суставов, проявляется, как правило, у бычков. Гемофилия.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 1642; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.85.33 (0.042 с.)