Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Функция, непрерывная на отрезке.Содержание книги Поиск на нашем сайте
Определение: Функция называется непрерывной на отрезке , если она непрерывна в каждой внутренней точке этого отрезка, непрерывна справа в точке и непрерывна слева в точке .
Теорема Кантора: Если функция непрерывна на отрезке , то для любого можно указать такое , что для любых и из таких, что .
+ БОНУС Доказательство: Возьмем число . Построим на отрезке точки следующим образом: если точка уже построена, то рассмотрим множество , состоящее из всех точек , удовлетворяющих неравенствам: , . Положим (см. рисунок), что: если пусто (и на этом построение заканчивается). если не пусто. Заметим, что в силу непрерывности и для любого из отрезка . Последовательность может быть конечной или бесконечной. Предположим, что она бесконечна, тогда для всех . Пусть . Так как , то функция непрерывна в точке слева, и потому можно указать такое число , что и для любого из интервала . По определению числа можно найти в интервале . Тогда любое число из интервала принадлежит интервалу , и потому , что противоречит тому, что . Таким образом, последовательность не может быть бесконечной, и потому существует такой номер , что . Положим: . Возьмем два любых числа и из отрезка таких, что . Тогда возможны два случая: или обе эти точки попали на некоторый отрезок и тогда , или этого не случилось, и тогда найдется точка между и . Но в этом случае , так как и (доказывается аналогично) , а потому . Так как все приведенные рассуждения справедливы для любого , то теорема доказана.
Смысл этой теоремы состоит в том, что для всех точек отрезка можно по заданному числу подобрать общее для всех точек число (фигурирующее в определении). Для функций, непрерывных на интервале это можно сделать уже не всегда.
БИЛЕТ 26. Дифференцируемость функции. Дифференциал. Понятие производной функции. Определение: Пусть функция f(x) определена в окрестности точки .Если ее приращение можно представить в виде ,то говорят,что f(x) дифференцируема в точке (иногда пишут -величина более высокого порядка, чем а это означает, что ) -линейная функция от .Она называется дифференциалом функции f(x) и обозначается
Пример:
Критерий дифференцируемости: Для того, чтобы функция y=f(x) была дифференцируема в точке необходимо и достаточно, чтобы существовала производная в этой точке.
Доказательство: 1.Необходимость. f(x) дифференцируема в точке это означает . Разделим это равенство на и перейдем к пределу ,т.е. существует , т.е. производная существует. 2.Достаточность. Пусть существует или , т.е. f(x) дифференцируема в точке . Итак, , т.е. .Отсюда следует новое обозначение производной и эту величину можно рассматривать как один символ, так и как частное дифференциалов.
|
||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 361; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.107.11 (0.006 с.) |