Одноосное растяжение и сжатие 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Одноосное растяжение и сжатие



 

Возьмём однородный стержень и приложим к его основаниям растягивающие (или сжимающие) усилия (рис.7.1). Пусть - длина недеформированного стрежня, а S - его сечение. После приложения силы F его длина получает приращение D и делается равной . Отношение

, (7.1)

называется относительным удлинением стержня.

В случае растягивающих сил оно положительно, в случае сжимающих сил – отрицательно.

Деформация стержня связана с возникновением упругих сил, с которыми одна часть стержня действует на другую, с которой она граничит. Такие силы действуют в любом поперечном сечении. Внешняя сила, приложенная к каждой из этих двух частей, уравновешивается упругой силой Fупр, действующей на рассматриваемую часть со стороны другой. Силу, перпендикулярную поперечному сечению стержня и отнесенную к единице его площади, называют нормальным упругим напряжением

. (7.2)

В системе СИ упругое напряжение измеряется в Н/м2.

Опыт показывает, что при малых деформациях, возникающие в теле нормальные упругие напряжения пропорциональны относительной деформации, т.е.

, (7.3)

где Е - постоянная, называемая модулем Юнга и зависящая только от материала стержня и его физического состояния..

Формула (7.3) выражает закон Гука для деформации растяжения и сжатия. Из нее следует, что модуль Юнга равен тому нормальному напряжению, при котором относительное удлинение равно единице. Длина стержня в этом случае увеличилась бы в 2 раза, если бы при такой деформации выполнялся закон Гука. Однако, при таких больших деформациях закон Гука не выполняется и либо образец разрушается, либо нарушается пропорциональность между деформацией и силой.

Под действием растягивающей или сжимающей силы изменяются не только продольные, но и поперечные размеры стержня. Характеристикой этого изменения является относительное поперечное сжатие (растяжение)

, (7.4)

где d - поперечный размер образца.

При растяжении e i < 0, при сжатии e i>0. Отношение

, (7.5)

называется коэффициентом Пуассона.

Для большинства изотропных материалов, к которым относятся, например, металлы, имеющие поликристаллическую структуру, он близок к 0,25. Модуль Юнга Е и коэффициент Пуассона m полностью характеризуют упругие свойства изотропного материала. Все прочие упругие постоянные могут быть выражены через Е и m.

Деформированное тело обладает запасом потенциальной энергии.Эта энергия называетсяупругой. Она равна работе, затраченной на деформацию тела.

Приложим к стержню растягивающую силу ƒ(x) и будем непрерывно увеличивать ее от начального значения ƒ=0 до конечного значения ƒ=F. При этом удлинение будет меняться от x = 0 до конечного значения x = Dl. По закону Гука

. (7.6)

Вся работа, совершаемая при деформации, запасается в виде упругой энергии, поэтому

. (7.7)

Эта энергия распределена по всему объему деформированного тела, что дает основание ввести плотность энергии упругой деформации, т.е. энергию, приходящуюся на единицу объема стержня,

. (7.8)

Сдвиг

Сдвигом называют такую деформацию твердого тела, при которой все его плоские слои, параллельные некоторой плоскости, называемой плоскостью сдвига, смещаются параллельно друг другу (рис.7.2). Сдвиг происходит под действием касательной силы F, приложенной к грани ВС, параллельной плоскости сдвига. Грань АD, параллельная ВС, закреплена неподвижно. При малом сдвиге:

, (7.9)

где D х = - абсолютный сдвиг, а g - угол сдвига, называемый также относительным сдвигом.

В любом сечении образца, параллельном плоскости сдвига, возникают уже не нормальные, а касательные упругие напряжения, определяемые по формуле

. (7.10)

По закону Гука касательные напряжения пропорциональны относительному сдвигу, т.е.

, (7.11)

где G - модуль сдвига.

Модуль сдвига численно равен тому касательному напряжению, которое возникло бы в образце при относительном сдвиге, равном единице, если бы в этом случае выполнялся закон Гука.

Между модулем сдвига, модулем Юнга и коэффициентом Пуассона существует следующее соотношение

. (7.12)

Объемная плотность энергии упругой деформации при сдвиге, как и при растяжении (7.8), прямо пропорциональна квадрату напряжения и обратно пропорциональна модулю упругости:

. (7.13)

 

Кручение

Возьмем однородный стержень, закрепим его верхний конец, а к нижнему концу приложим закручивающие силы, создающие вращающий момент. В результате этого каждый радиус нижнего основания повернется вокруг продольной оси на некоторый угол. Такая деформация называется кручением.

Деформация кручения является неоднородной. Это значит, что деформация внутри образца меняется от точки к точке. Чем дальше от оси вращения, тем больше деформация.

Закон Гука для деформации кручения записывается в виде

, (7.14)

где ƒ – постоянная для данного образца величина, называемая модулем кручения, - угол кручения, - крутящий момент.

Модуль кручения показывает, какой момент сил нужно приложить, чтобы закрутить стержень на угол в 1 рад. В отличие от модулей Юнга и сдвига он зависит не только от материала, но и от геометрических размеров образца.

Деформацию кручения можно свести к деформации сдвига. Выведем выражение для модуля кручения.

Стержень (рис.7.3) можно представить состоящим из множества цилиндрических оболочек (трубок) радиусом r, длиной L и толщиной dr. Площадь основания трубки

dS = 2p r dr, (7.15)

а момент упругих сил, действующих на это основание:

dM = 2 p r dr τ r, (7.16)

где τ - тангенциальное напряжение в этом основании.

С учетом того, что каждый элемент цилиндрической трубки сдвигается на угол:

, (7.17)

то по закону Гука для деформации сдвига получим

. (7.18)

Таким образом, момент сил, действующих на цилиндрическую трубку, равен

. (7.19)

Полный момент сил, действующих на стержень радиуса R, найдется интегрированием:

. (7.20)

Сопоставляя (7.20) с законом Гука для деформации кручения (7.14), получим выражение для модуля кручения:

. (7.21)

Экспериментально модуль кручения можно измерить. С этой целью подвесим на проволоке массивное симметричное телои возбудим крутильные колебания. Эти колебания будут гармоническими с периодом

, (7.22)

где I – момент инерции тела, f – модуль кручения проволоки. Если момент инерции тела известен, то, определив период колебаний, можно вычислить по формуле (9.22) модуль кручения проволоки.

Примеры решения задач

 

1. Нижнее основание стального цилиндра диаметром d=20 см и высотой h=20 см закреплено неподвижно. На верхнее основание действует горизонтальная сила F=20 кН. Найти: 1) тангенциальное напряжение в материале цилиндра, 2) смещение верхнего основания цилиндра, 3) потенциальную энергию и объемную плотность деформированного образца.

Решение

1) Тангенциальное напряжение материала деформированного образца выражается формулой

.

В данном случае , поэтому получим

.

Сделав вычисления, найдем

2) Смещение верхнего основания цилиндра будет равно

,

где - угол сдвига.

В соответствии с законом Гука

,

где = 8,1.1010 Па - модуль сдвига стали.

Произведя подстановку, получим

.

Выполнив вычисления, найдем

1,6 мкм.

3. Потенциальная энергия и объемная плотность энергии деформированного образца определятся по формулам

и .

Сделав вычисления, получим, U=159 мДж, w = 2,5 Дж/м3.

2. Определить относительное удлинение алюминиевого стержня, если при его растяжении затрачена работа А =6,9 Дж. Длина стержня l =1 м, площадь поперечного сечения S=1 мм2, модуль Юнга для алюминия Е =69 ГПа.

Решение

Работа, затраченная при растяжении стержня, переходит в его упругую потенциальную энергию

,

где - нормальное напряжение деформированного образца, V = Sl – его объем.

В соответствии с законом Гука

.

После подстановки и преобразований, найдем

.

Вычисления дают

 

Основные положения

 

1. Упругое напряжение – физическая величина, равная упругой силе, приходящейся на единицу площади:

- нормальное напряжение, сила направлена по нормали к площадке

;

- тангенциальное напряжение, сила направлена по касательной к площадке

.

2. Закон Гука – напряжение упруго деформированного тела прямо пропорционально его относительной деформации:

- деформация растяжения (сжатия)

;

- деформация сдвига

.

3. Коэффициент Пуассона – отношение поперечного сужения к продольному удлинению:

4. Объемная плотность энергии упруго деформированного тела:

- деформация растяжения (сжатия)

;

- деформация сдвига

.

 

Контрольные вопросы

 

1. Что такое упругие напряжения? Как определяются нормальные и тангенциальные напряжения?

2. Как формулируется закон Гука для различных видов деформации?

3. Каков физический смысл модуля Юнга и модуля сдвига?

4. Как определяется коэффициент Пуассона?

5. От чего зависит объемная плотность энергии упруго деформированного тела?


Механика жидкостей и газов

 



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 1576; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.70.157 (0.029 с.)