Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Постановка й класифікація задач оптимізації

Поиск

Постановка й класифікація задач оптимізації

Під час розробки автоматичних систем насамперед ставиться задача виконання функціонального призначення системи, що визначається метою керування. Більш складною є задача розробки системи з найкращими показниками якості – оптимальної системи. Оцінку досяжності мети у процесі керування об’єктом, яка подана у формалізованому вигляді, називають критерієм оптимальності або цільовою функцією. Розробка оптимальної системи - це задача синтезу або задача оптимізації.

Розв’язання цієї задачі починають з її постановки, яка містить опис заданих реальних елементів системи математичними співвідношеннями (складення математичної моделі системи), визначення існуючих обмежень для координат системи й аналіз характеристики сигналів зовнішніх впливів, а також складення математичного виразу заданого критерію якості. Далі задачу розв’язують відповідними математичними методами, у результаті чого знаходять функцію керування за умови мінімуму чи максимуму показника якості, що визначає оптимальний режим роботи об’єкта.

Критерії оптимальності

Важним етапом під час розробки оптимальних систем є формулювання мети оптимізації, яка математично виражається як вимога забезпечення мінімуму чи максимуму деякого показника якості (критерію оптимальності).

Як критерій оптимальності, можуть бути прийняті різні технічні та техніко-економічні показники й оцінки.

Наприклад, критерій може відображати техніко-економічну вигоду (продуктивність, коефіцієнт корисної дії тощо), при цьому оптимальне керування повинне забезпечувати максимум критерію оптимальності; він може виражати також утрати (витрату енергії, палива, коштів і т.д.), у цьому випадку оптимальне керування забезпечує мінімум критерію.

Цільову функцію необхідно подати у формі, яка допускає використання будь-якого відомого методу синтезу оптимальних систем. Під час розробки найпростіших локальних систем керування звичайно розглядають задачу оптимізації за критеріями, що характеризують якість функціонування системи (точність, швидкодію), а інші критерії не враховують.

У теорії автоматичного керування широко розповсюджені функціонали, що характеризують якість системи.

Змінна величина I[x(t)] називається функціоналом, що залежить від функції x(t), якщо кожній функції x(t) відповідає число I.

У загальному випадку функціонал залежить від фазових координат yi(t), координат керування uj(t), збурюючих впливів zk(t) і може бути поданий у вигляді:

y, u, z ]dt, (10.3)

де [t0, t1] – інтервал часу, що розглядають; F – визначена функція, яка відображає показник якості; y, u, z – вектори фазових змінних, керувань і збурень відповідно.

Досягнення максимального чи мінімального (екстремального) значення цього функціоналу вказує на оптимальну роботу чи стан системи.

Розглянемо деякі типи критеріїв оптимальності найпростіших об’єктів і систем керування складними процесами.

Час перехідного процесу:

(10.4)

Отримана при цьому система є оптимальною за швидкодією, якщо вона забезпечує мінімум інтегралу (10.4) з урахуванням обмежень координат.

Інтегральні оцінки якості перехідного процесу:

(10.5)

(10.6)

(10.7)

де e(t) = y*(t)–y(t) – відхилення вихідної змінної y(t) від заданого значення y*(t);

- середнє значення квадрату помилки системи;

- середнє значення квадрату вихідної координати.

За умови забезпечення мінімуму інтегралу (10.5) система є оптимальною за точністю у динамічних режимах при ступінчастому задавальному впливі.

За умови забезпечення мінімуму функціоналів (10.6) і (10.7) система є оптимальною за точністю у статичному розумінні.

Для визначення коливальності перехідного процесу, тобто характеру його протікання, застосовують узагальнений інтегральний квадратичний критерій:

(10.8)

де rі – вагові коефіцієнти.

Перший доданок у виразі (10.8) забороняє тривале існування відхилення вихідної координати у, а подальші доданки – тривале існування великих значень похідних. Тому мінімуму інтегралу (10.8) відповідають достатньо швидкоплинні й плавні перехідні процеси.

Зазначимо, що інтегральні критерії (10.5) – (10.8) не враховують того, що у системі можуть мати місце обмеження потужності сигналу керування. Крім того, система сама може мати обмежені енергетичні ресурси. Ці обмеження враховують функціонали вигляду:

(10.9)

Перший доданок у виразі (10.9) має той самий смисл, що й у виразі (10.8). Другий доданок, з одного боку, означає досягнення оптимальності гасіння збуреного руху за умови обмеження витрат енергії на керування, а з іншого – забезпечує пошук оптимального керування серед множини лінійних функцій, що допускаються.

Витрати енергії на керування:

(10.10)

де u(t) та i(t) – напруга і струм навантаження; r=1/R – коефіцієнт пропорційності; R – опір електричного ланцюга.

Даний критерій також використовують при керуванні від джерел енергії, що є обмеженими за потужністю.

У механічних системах для оцінювання енергії керування іноді беруть функціонал вигляду:

(10.11)

де u(t) – координата керування; - похідна вихідної змінної об’єкта.

Витрати палива:

. (10.12)

За умови мінімуму цього інтегралу отримуємо систему, оптимальну за витратами палива.

У випадках, коли необхідно забезпечити найкращу роботу системи за найгірших можливих умов, застосовують мінімаксний критерій оптимальності.

Формування критерію оптимальності, що визначає мету оптимізації, - це інженерна та інженерно-економічна задача, яку розв’язують на підставі глибокого та всебічного вивчення об’єкта, яким керують.

Якщо необхідно врахувати різні показники якості, задача вибору критерію оптимальності ускладнюється, оскільки вимоги до системи звичайно є суперечними. У зв’язку з цим як основний беруть критерій якості функціонування.

 

Постановка й класифікація задач оптимізації

Під час розробки автоматичних систем насамперед ставиться задача виконання функціонального призначення системи, що визначається метою керування. Більш складною є задача розробки системи з найкращими показниками якості – оптимальної системи. Оцінку досяжності мети у процесі керування об’єктом, яка подана у формалізованому вигляді, називають критерієм оптимальності або цільовою функцією. Розробка оптимальної системи - це задача синтезу або задача оптимізації.

Розв’язання цієї задачі починають з її постановки, яка містить опис заданих реальних елементів системи математичними співвідношеннями (складення математичної моделі системи), визначення існуючих обмежень для координат системи й аналіз характеристики сигналів зовнішніх впливів, а також складення математичного виразу заданого критерію якості. Далі задачу розв’язують відповідними математичними методами, у результаті чого знаходять функцію керування за умови мінімуму чи максимуму показника якості, що визначає оптимальний режим роботи об’єкта.



Поделиться:


Последнее изменение этой страницы: 2016-12-27; просмотров: 192; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.203.56 (0.008 с.)