Этапы энергетического обмена (аэробного дыхания) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Этапы энергетического обмена (аэробного дыхания)

Поиск

Процесс аэробного дыхания проходит в три этапа: 1) подготовительный; 2) бескислородный; 3) кислородный.

Первый этапподготовительный или этап пищеварения, включающий в себя ферментативное расщепление полимеров до мономеров: белков до аминокислот, жиров до глицерина и жирных кислот, гликогена и крахмала до глюкозы, нуклеиновых кислот до нуклеотидов. Протекает в желудочно-кишечном тракте при участии пищеварительных ферментов и цитоплазме клеток при участии ферментов лизосом.

На этом этапе выделяется небольшое количество энергии, рассеивающейся в виде тепла, а образовавшиеся мономеры подвергаются в клетках дальнейшему расщеплению или используются как строительный материал.

Второй этапанаэробный (бескислородный). Он протекает в цитоплазме клеток без участия кислорода. Мономеры, образовавшиеся на первом этапе, подвергаются дальнейшему расщеплению. Примером такого процесса является гликолизбескислородное неполное расщепление глюкозы.

В реакциях гликолиза из одной молекулы глюкозы (С6Н12О6) образуются две молекулы пировиноградной кислоты (С3Н4О3 – ПВК). При этом от каждой молекулы глюкозы отщепляется 4 атома Н+ и образуются 2 молекулы АТФ. Атомы Водорода присоединяются к НАД+ (никотинамидадениндинуклеотид, функция НАД и подобных к нему переносчиков состоит в том, чтобы в первой реакции принимать Водород (восстанавливаться), а в другой – его отдавать (окисляться).

Сумарное уравнение гликолиза выглядит так:

С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+→ 2С3Н4О3 + 2АТФ + 2Н2О +2НАД·Н2

В процессе гликолиза выделяется 200 кДж/моль энергии, из которой 80 кДж или 40% идет на синтез АТФ, а 120 кДж (60%) рассеивается в виде тепла.

В анаэробных организмах (многие бактерии, микроскопические грибы, внутрикишечные паразиты) этот этап является конечным. ПВК (в зависимости от типа брожения) может превращаться в молочную кислоту (С3Н6О3), этиловый спирт (С2Н5ОН). Некоторые клетки (например, мышечные, клетки растений) при недостатке кислорода могут переходить на анаэробное дыхание. В этих случаях:

а) в животных клетках образуется 2 молекулы молочной кислоты, которая в дальнейшем превращается в гликоген и депонируется в печени;

б) в растительных клетках происходит спиртовое брожжение с выделением СО2. Конечным продуктом является этанол.

Анаэробное дыхание по сравнению с кислородным дыханием эволюционно более ранняя, но менее эффективная форма получения энергии из питательных веществ.

Третий этап аэробный (кислородный, тканевое дыхание) протекает в митохондриях и требует присутствие кислорода.

Органические соединения, образовавшиеся на предыдущем бескислородном этапе, окисляются путем отщепления водорода до СО2 и Н2О. Отсоеденившееся атомы Водорода с помощью переносчиков передаются до Кислорода, взаимодействуют с ним и образуют воду. Этот процесс сопровождается выделением значительного количества энергии, часть которой (55%) идет на образование воды. В кислородном этапе можно выделить реакции цикла Кребса и реакции окислительного фосфорилирования.

Цикл Кребса (цикл трикарбоновых кислот) происходит в матриксе митохондрий. Его открыл английский биохимик Х. Кребс в 1937 году.

Цикл Кребса начинается реакцией пировиноградной кислоты с уксуснокислой. При этом образуется лимонная кислота, которая после ряда последовательных преобразований снова становится уксуснокислой и цикл повторяется.

В ходе реакций цикла Кребса из одной молекулы ПВК образуется 4 пары атомов Водорода, две молекулы СО2, одна молекула АТФ. Углекислый газ выводится из клетки, а атомы Водорода присоединяются к молекулам переносчиков – НАД и ФАД (флавинадениндинуклеотид), в результате чего образуются НАД·Н2 и ФАД·Н2.

Передача энергии от НАД· Н2 и ФАД·Н2, которые оброзовались в цыкле Кребса и на предыидущем анаэробном этапе, к АТФ просходит на внутренней мембране митохондрий в дыхательной цепи.

Дыхательная цепь или цепь переноса электронов (электронно-транспрортная цепь) содержится во внутренней мембране митохондрий. Её основу составляют переносчики электронов, которые входят в состав ферментных комплексов, катализирующих окислительно-востановительные реакции.

Пары Водорода отщепляются от НАД·Н2 и ФАД·Н2, в виде протонов и электронов (2Н++2е), поступают в электронно-транспортную цепь. В дыхательной цепи они вступают в ряд биохимических реакций, конечный результат которых – синтез АТФ (рис.5.4.)

 

Рис. 5.4 Электронно-транспортная цепь

Электроны и протоны захватываются молекулами переносчиков дыхательной цепи и переправляются: электроны на внутреннюю сторону мембраны, а протоны на внешнюю. Электроны соединяются с Кислородом. Атомы Кислорода при этом становятся отрицательно заряженными:

О2 + е- = О2-

На внешней стороне мембраны накапливаются протоны (Н+), а изнутри анионы (О2-). В результате этого возрастает разность потенциалов.

В некоторых местах мембраны встроены молекулы фермента для синтеза АТФ (АТФ-синтетаза), который имеет ионный (протонный) канал. Когда разница потенциалов на мембране достигает 200мВ, протоны (Н+) силой электрического поля проталкиваются через канал и проходят на внутреннюю сторону мембраны где взаимодействуют с О2-, образуя Н2О

½ О2 + 2Н+ = Н2О

Кислород, поступающий в митохондрии необходим для присоединения электронов (е-), а затем протонов (Н+). При отсутствии О2 процессы, связанные с транспортом протонов и электронов, прекращаются. В этих случаях многие клетки синтезируют АТФ, расщепляя питательные вещества в процессе брожения.



Поделиться:


Последнее изменение этой страницы: 2016-12-27; просмотров: 2575; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.243.29 (0.01 с.)