Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сети Хопфилда и машина БольцманаСодержание книги
Поиск на нашем сайте
Недостатком сетей Хопфилда является их тенденция стабилизироваться в локальном, а не глобальном минимуме функции энергии. Эта трудность преодолевается в основном с помощью класса сетей, известных под названием машин Больцмана, в которых изменения состояний нейронов обусловлены статистическими, а не детерминированными закономерностями. Существует тесная аналогия между этими методами и отжигом металла, поэтому и сами методы часто называют имитацией отжига. Термодинамические системы Металл отжигают, нагревая его до температуры, превышающей точку его плавления, а затем давая ему медленно остыть. При высоких температурах атомы, обладая высокими энергиями и свободой перемещения, случайным образом принимают все возможные конфигурации. При постепенном снижении температуры энергии атомов уменьшаются, и система в целом стремится принять конфигурацию с минимальной энергией. Когда охлаждение завершено, достигается состояние глобального минимума энергии. Рис. 6.3. Линии энергетических уровнен При фиксированной температуре распределение энергий системы определяется вероятностным фактором Больцмана exp(– E / kT), где Е – энергия системы; k – постоянная Больцмана; Т – температура. Отсюда можно видеть, что имеется конечная вероятность того, что система обладает высокой энергией даже при низких температурах. Сходным образом имеется небольшая, но вычисляемая вероятность, что чайник с водой на огне замерзнет, прежде чем закипеть. Статистическое распределение энергий позволяет системе выходить из локальных минимумов энергии. В то же время вероятность высокоэнергетических состояний быстро уменьшается со снижением температуры. Следовательно, при низких температурах имеется сильная тенденция занять низкоэнергетическое состояние. Статистичекие сети Хопфилда Если правила изменения состояний для бинарной сети Хопфилда заданы статистически, а не детерминированно, как в уравнении (6.1), то возникает система, имитирующая отжиг. Для ее реализации вводится вероятность изменения веса как функция от величины, на которую выход нейрона OUT превышает его порог. Пусть E k = NETk – qk, где NETk – выход NET нейрона k; q – порог нейрона k, и , (отметьте вероятностную функцию Больцмана в знаменателе), где Т – искусственная температура. В стадии функционирования искусственной температуре Т приписывается большое значение, нейроны устанавливаются в начальном состоянии, определяемом входным вектором, и сети предоставляется возможность искать минимум энергии в соответствии с нижеследующей процедурой: 1. Приписать состоянию каждого нейрона с вероятностью р k значение единица, а с вероятностью 1– р k – нуль. 2. Постепенно уменьшать искусственную температуру и повторять шаг 1, пока не будет достигнуто равновесие. Обобщенные сети Принцип машины Больцмана может быть перенесен на сети практически любой конфигурации, хотя устойчивость не гарантируется. Для этого достаточно выбрать одно множество нейронов в качестве входов и другое множество в качестве выходов. Затем придать входному множеству значения входного вектора и предоставить сети возможность релаксировать в соответствии с описанными выше правилами 1 и 2. Процедура обучения для такой сети, описанная в [5], состоит из следующих шагов: 1. Вычислить закрепленные вероятности. а) придать входным и выходным нейронам значения обучающего вектора; б) предоставить сети возможность искать равновесие; в) записать выходные значения для всех нейронов; г) повторить шаги от а до в для всех обучающих векторов; д) вычислить вероятность , т. е. по всему множеству обучающих векторов вычислить вероятность того, что значения обоих нейронов равны единице. 2. Вычислить незакрепленные вероятности. а) предоставить сети возможность «свободного движения» без закрепления входов или выходов, начав со случайного состояния; б) повторить шаг 2а много раз, регистрируя значения всех нейронов; в) вычислить вероятность , т. е. вероятность того, что значения обоих нейронов равны единице. 3. Скорректировать веса сети следующим образом: , где δ w ij – изменение веса w ij, η – коэффициент скорости обучения. ПРИЛОЖЕНИЯ
|
||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 238; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.146.12 (0.007 с.) |