Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Географическая оболочка и природные территориальные комплексыСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Объектом изучения комплексной физической географии являются географическая оболочка как целостное природное образование, особая планетарная система и слагающие ее природные территориальные и аквальные комплексы разной размерности, которые обособились в процессе развития географической оболочки. Являясь целостным образованием, географическая оболочка неоднородна внутри себя. В вертикальном направлении она распадается на ряд компонентных (частных) оболочек (литосферу, гидросферу, атмосферу, биосферу, педосферу), в каждой из которых преобладает вещество в определенном агрегатном состоянии или форме его организации. Вещество частных оболочек формирует различные компоненты природы: рельеф с образующими его горными породами, почвы с корой выветривания, водные и воздушные массы, сообщества растений и животных (биоценозы). Между компонентными оболочками происходит обмен веществом, энергией и информацией, объединяющий эти разнокачественные оболочки в качественно новое целостное единство, свойства которого не сводятся к свойствам суммы слагающих его частей. Изучением компонентных оболочек как составных частей более сложного целого занимаются отраслевые физико-географические науки (геоморфология, гидрология, климатология, почвоведение, биогеография), материалы которых физико-географы используют в своих исследованиях. Горизонтальная неоднородность географической оболочки выражается в существовании природных территориальных и природных аквальных комплексов (соответственно ПТК и ПАК) — исторически обусловленных и территориально ограниченных закономерных сочетаний взаимосвязанных компонентов природы. Их обособление связано с территориальной дифференциацией энергии, обусловленной формой и происхождением планеты Земля: различным количеством лучистой энергии, поступающей из Мирового пространства, и внутренней энергии Земли, получаемой тем или иным участком географической оболочки. И вертикальная, и горизонтальная неоднородность географической оболочки возникла в процессе ее формирования и разви- тия, но вертикальная дифференциация (на геосферы) обусловлена прежде всего дифференциацией вещества, а горизонтальная (на ПТК) связана главным образом с пространственной дифференциацией энергии. Так как подавляющая часть энергии поступает в географическую оболочку извне и подвержена значительным изменениям в пространстве и во времени, горизонтальная дифференциация менее устойчива, более динамична и постоянно усложняется в процессе развития географической оболочки. В результате этого в пределах географической оболочки сформировалось большое количество ПТК разной величины и различной степени сложности, как бы вложенных друг в друга и представляющих собой систему соподчиненных единиц, определенную иерархическую лестницу, так называемую таксономическую систему. Чем крупнее комплекс, чем выше его ранг, тем больше неоднородность внутри него, тем более заметно его внутреннее многообразие, тем ярче выражена его индивидуальность, неповторимость, непохожесть на соседние комплексы. Общепринятой таксономической системы ПТК в физической географии пока еще нет. Наиболее широко распространенной является следующая система комплексов: географическая оболочка— суша — материк—страна—зона (горная область) — провинция — район—ландшафт—урочище—фация. Наряду с ней существуют и другие системы, в том числе и двухрядные, имеющие на своих верхних ступенях самостоятельные системы зональных (географический пояс —зона—подзона) и азональных (суша—континент— субконтинент—страна) единиц. Каждый более мелкий комплекс возникает и обособляется в процессе развития вмещающего его более крупного ПТК, поэтому, чем мельче комплекс, тем он моложе, тем проще устроен и тем более динамичен. Исключение составляют лишь реликтовые комплексы, входящие в состав более крупных, но более молодых. Представление о природных территориальных комплексах зародилось в географии в конце XIX столетия и сформировалось в первой половине XX в. Оно связано с именами таких ученых, как В.В.Докучаев, А.Н.Краснов, Г.Н.Высоцкий, Г.Ф.Морозов, Л.С.Берг, Б.Б.Полынов, И.В.Ларин, Р.И.Аболин, Л.Г.Рамен-ский, А. А. Борзов и др. Разные исследователи называли изучаемые комплексы по-разному: ландшафтные зоны и географические комплексы, ландшафты и микроландшафты, фации и эпифации, эпи-морфы и урочища. Разной была степень внутренней сложности изучаемых объектов, а иногда просто названия, но сущность объектов сохранялась: в любом случае это были территориальные сочетания взаимосвязанных компонентов природы — ПТК. Естественно, в процессе развития науки и накопления материалов по изучению ПТК представление о них уточнялось, дополнялось, совершенствовалось, уточнялись иерархия и диагностиче- ские признаки. Одно из последних новейших определений термина ПТК принадлежит А.Г.Исаченко. Он определяет ПТК как «пространственно-временную систему географических компонентов, взаимообусловленных в своем размещении и развивающихся как единое целое» (1991, с. 6). Наряду с термином ПТК в качестве синонима иногда используются названия «геокомплекс», «геосистема», «географический комплекс», «ландшафтный комплекс» и даже «ландшафт». Можно дискутировать по поводу полного или неполного совпадения этих терминов, но от использования термина «ландшафт» в качестве синонима ПТК следовало бы отказаться, так как многие исследователи под ландшафтом понимают не любой ПТК, а одну строго определенную единицу в ряду соподчиненных ПТК. Такой трактовки ландшафта придерживаются и авторы данного учебника. Объектами полевых комплексных физико-географических исследований обычно служат относительно небольшие и достаточно просто устроенные ПТК — ландшафт и его морфологические единицы. Простейший, элементарный ПТК называется фацией. По определению Н. А. Солнцева (1949), «фация — это природный территориальный комплекс, на всем протяжении которого сохраняется одинаковая литология поверхностных пород, одинаковый характер рельефа и увлажнения, один микроклимат, одна почвенная разность и один биоценоз». Из определения следует, что основным диагностическим признаком фации служит пространственная однородность слагающих ее компонентов. Эта однородность может нарушаться только воздействием человека, в результате чего возникают антропогенные модификации фаций, занимающие целиком или частично природные фации. Причиной обособления фаций чаще всего бывает изменение рельефа, т.е. изменение местоположения (рис. 1). В связи с тем что рельеф земной поверхности очень неровный, его изменение происходит на небольших расстояниях, и фации имеют, как правило, малые площади. Обычно фация занимает элемент или часть формы микрорельефа. Примерами фаций могут быть склон оползневого бугра с липняком пролесковым на дерново-подзолистых среднесуглинистых почвах; центральная часть суффозионной западины с влажнотрав-но-осоковым лугом на дерново-глеевых тяжелосуглинистых почвах и т.д. Часто встречаются фации, занимающие часть элемента формы мезорельефа, например подножие делювиального склона, притеррасную избыточно влажную часть поймы, верхнюю выпуклую часть моренного холма, межложбинное пространство на приба-лочном склоне и т.д. Иногда фация занимает весь элемент формы мезорельефа или целиком всю форму микрорельефа. В качестве примера можно привести фацию неглубокой блюдцеобразной запади- ны, отличающуюся от окружающего ее выровненного пространства несколько повышенным увлажнением, глееватостью почвы, более влаголюбивой растительностью. При этом ровная поверхность междуречья при однородной литологии и одинаковом поч-венно-растительном покрове также будет являться фацией, хотя и более обширной по размерам. Иногда обособление фаций может быть вызвано сменой литологии слагающих пород. Так, если овраг прорезает толщу пород разного литологического состава, то на частях склона, сложенных различными породами, формируются свои, отличные друг от друга фации (рис. 2). В обособлении фаций определенную роль может играть крутизна или экспозиция склона, которая обусловливает различия в инсоляции, а следовательно, в нагревании склонов разной экспозиции. Как видим, первопричиной фациальной дифференциации является изменение литогенной основы. Оно в свою очередь вызыва- ет изменение теплового режима, глубины залегания грунтовых вод, баланса влаги и т.д. Это приводит к возникновению новых условий местообитания (экологических условий) и формированию нового биоценоза. Подурочище — это ПТК, состоящий из ряда фаций, приуроченных к одному элементу формы мезорельефа. Фации, слагающие подурочище, отличаются ярко выраженной общностью местоположения, связаны генетически и динамически и вследствие этого имеют много общего в отношении природных свойств и процессов, их изменяющих (гравитационных, поверхностного стока и др.). Следовательно, основным диагностическим признаком под-урочища является приуроченность к определенному элементу формы мезорельефа одной экспозиции: к склону оврага, вершине моренного холма, плоской поверхности террасы и т.д. Все фации, входящие в подурочище, обладают, таким образом, топологическим единством (единством местоположения), следствием которого является их сходство в отношении поступающего тепла и света. Нередко фации подурочища обладают и литологической общностью, так как все пространство в границах подурочища может быть сложено одной литологической разновидностью поверхностных отложений: аллювиальными песками, балочным аллювием, делювиальными суглинками, опесчаненной мореной и т.д. Однако ли-тологическая общность фаций подурочища не является обязательной. В пределах подурочища пофациально могут варьировать механический состав почв, условия почвенно-грунтового увлажнения и водного режима почв, а подчас и литологический состав пород. Это обусловливает разную степень смытости, оглеенности, опод-золенности почв, существование различных группировок растений и т.д. Примерами подурочищ могут служить покатый прибалочный склон северной экспозиции, сложенный с поверхности покровными суглинками, с серыми лесными средне- и тяжелосуглинистыми почвами слабой и средней смытости, распаханный; коренной склон долины реки, сложенный покровными суглинками, подстилаемыми мореной, залегающей на известняках карбона, поросший лесом; склон моренного холма южной экспозиции, покрытый липово-еловым лесом, с дерново-подзолистыми почвами разной степени оподзоленности и завалуненности. Урочище — более сложный ПТК, представляющий собой систему генетически, динамически и территориально взаимосвязанных фаций и подурочищ. Как правило, урочища бывают четко обособлены в пространстве, так как каждое из них обычно занимает целиком всю форму мезорельефа. Особенно четко оконтуриваются урочища в условиях расчлененного рельефа с частым чередованием положительных и отрицательных форм: холмов и котловин, балок и межбалочных пространств, гряд и ложбин и т.д. Пространственное совпадение урочищ с определенными формами рельефа является важнейшим диагностическим признаком при их выделении. Кроме рельефа, причиной обособления урочищ может явиться изменение геологического строения (глубины залегания и характера коренных пород, подстилающих рыхлые наносы, состава рыхлых отложений и т.д.) или глубины залегания грунтовых вод. Если по простиранию одной формы мезорельефа наблюдается смена подстилающих пород, вскрываемых этой формой, то урочище будет занимать лишь часть, вернее отрезок формы мезорельефа, характеризующийся одинаковым геологическим строением. Например, если овраг в верховьях прорезает только покровные суглинки, в средней части, прорезав суглинки, врезается в морену, а в низовьях вскрывает и подстилающие морену известняки, то в его пределах формируются три различных урочища (рис. 3). Верховье будет представлять собой сухой полузадернованный овраг в покровных суглинках; средняя часть — сырую балку со склонами, сложенными в верхней части покровными суглинками, а в ниж- ней — мореной; нижняя часть — сухую балку со ступенчатыми склонами. Внутренняя структура такого оврага будет неизменно усложняться при движении от верховья к его устьевой части. Что касается приуроченности биокомпонентов к ПТК ранга урочища, то они не могут являться диагностическим признаком при выделении урочищ. Почвы и растительность в пределах урочища могут существенно изменяться от фации к фации (пофациаль-но) вплоть до принадлежности к различным типам. Так, осоково-пушицевые низинные болотца с торфянисто-глеевыми почвами днищ балок могут сменяться злаковыми степными ассоциациями на черноземах или дубравами на серых лесных почвах по склонам балок. В Подмосковье влажнотравные луга или ивняковые заросли днищ балок нередко сменяются еловыми или липовыми лесами по склонам. В связи с тем, что каждое урочище представляет собой закономерное сочетание слагающих его фаций, выделение урочищ может производиться путем изучения их внутренней структуры. Особенно важен такой подход к изучению урочищ в условиях однообразного слабо расчлененного рельефа, где основной диагностический признак (рельеф) визуально улавливается плохо, поэтому оказывается недостаточным для разграничения урочищ. В зависимости от своего морфологического строения урочища делятся на простые и сложные. Если в урочище каждый элемент формы рельефа занят только одной фацией, мы имеем дело с простым урочищем. Если же хоть один из элементов занят группой фаций (подурочищем), такое урочище будет сложным. Наиболее сложным является урочище, в котором каждый элемент рельефа представлен подурочищем. В любом ландшафте встречаются весьма разнообразные урочища, но не все они в равной мере определяют внешний облик и природные свойства ландшафта. Урочища, наиболее часто встречающиеся в ландшафте и определяющие его структуру, называют основными. Среди них выделяются фоновые урочища, или доминанты, занимающие наибольшие площади в ландшафте и образующие его фон. Обычно фоновыми являются урочища междуречных пространств, т.е. исходной поверхности территории, в большей или меньшей степени измененной последующими процессами. Наряду с урочищами-доминантами в ландшафте часто встречаются более мелкие урочища, вкрапленные в основной фон, которые тоже играют важную роль в его морфологическом строении, хотя и не занимают больших площадей. Это — субдоминанты. Они более молоды, чем фоновые, так как возникли на исходной поверхности под влиянием более поздних геологических и рельефо-образующих процессов, изменяющих эту поверхность. Субдоминантами часто бывают урочища растущих оврагов и мокрых балок, карстовых воронок, степных западин и т.д. Если фоновое урочище в каждом ландшафте часто одно, то субдоминантных может быть и два, и три. Встречаются полидоминантные ландшафты, в которых фонового урочища (доминанты) нет. Состав основных (фоновых и субдоминантных) урочищ и их взаимное расположение характеризуют происхождение ландшафта, направленность современных процессов и типичные черты различных компонентов, поэтому его изучение чрезвычайно важно для познания ландшафта. Кроме основных урочищ в каждом ландшафте имеются урочища, мало распространенные или встречающиеся единично. Они не определяют морфологической структуры ландшафта, но придают ей своеобразные черты. Это — дополняющие или второстепенные урочища. Среди них выделяются редкие и уникальные. Часто такие урочища проливают свет на историю развития ландшафтов изучаемой территории {реликтовые урочища) и раскрывают тенденции их будущего развития. Характерные сочетания закономерно повторяющихся урочищ образуют более крупные ПТК — местности и ландшафты. Местность в иерархии ПТК занимает положение между урочищем и ландшафтом и состоит из закономерного сочетания урочищ. Как и подурочище, это факультативная единица. Местности могут встречаться в пределах одного ландшафта и отсутствовать в другом. Происхождение местностей связано с некоторыми изменениями литогенной основы на пространстве ландшафта. Эти изменения не столь велики, чтобы вызвать формирование различных ландшафтов, но достаточны, чтобы придать некоторые специфические черты отдельным его частям. Обособление местностей может быть вызвано варьированием на пространстве ландшафта лито-логического состава поверхностных отложений (покровные суглинки — водно-ледниковые пески и т.д.), характера подстилающих пород (известняки — глины), комплексов форм рельефа (гривисто-ложбинная — бугристо-западинная пойма), интенсивности современных рельефообразующих процессов (интенсивная овражная эрозия на приречной равнине — замедленное развитие овражно-балочной сети на удаленных от рек участках ландшафта) и т.д. Каждый из таких вариантов отличается от соседних участков либо набором урочищ, либо их специфическими чертами, либо особенностями их размещения, например крупнохолмистый и мелкохолмистый участки в пределах холмисто-моренного таежного ландшафта. Нередко фоновые урочища остаются теми же, а изменения касаются субдоминантных или второстепенных урочищ. В основе обособления внутри ландшафта местностей лежат генетические причины, вполне объяснимые в каждом конкретном случае (рис. 4). I Ландшафт представляет собой довольно крупный (площадью в десятки и сотни квадратных километров) и сложный ПТК, состоящий из динамически сопряженных и закономерно повторяющихся в пространстве основных и второстепенных урочищ. Ландшафт обладает генетической однородностью, имеет одинаковый геологический фундамент, один тип рельефа и одинаковый климат, что и определяет специфику его морфологической структуры (набора и взаимного расположения морфологических единиц). Все эти особенности ландшафта включены в его определение, данное коллективом ландшафтной лаборатории МГУ: «Ландшафт — это генетически однородный природный территориальный комплекс, имеющий одинаковый геологический фундамент, один тип рельефа, одинаковый климат и состоящий из свойственного только данному ландшафту набора динамически сопряженных и закономерно повторяющихся в пространстве основных и второстепенных урочищ» (Г. Н. Анненская и др., 1962. — С. 44). Уже в самом определении намечен путь к практическому распознаванию ландшафтов, их изучению и картографированию, впервые указанный Н. А. Солнцевым в 1947 г. Основным диагностическим признаком ландшафта является его морфологическая структура, которая придает ландшафту характерный внешний облик (физиономические черты), позволяющий отличать один ландшафт от другого. В связи с этим изучение любого ландшафта в поле должно начинаться с изучения его морфологической структуры. Такой подход позволяет не только вскрыть наиболее существенные особенности ландшафта и взаимосвязи между его составными частями, но и провести границы ландшафта. В отличие от фаций и урочищ, границы которых обычно хорошо улавливаются визуально, ландшафты оконтуриваются, как правило, по характерному сочетанию урочищ на основании анализа его морфологической структуры, так как визуальное проведение границ комплекса, занимающего площадь в десятки и сотни квадратных километров, оказывается весьма затруднительным, а подчас просто невозможным. При работе в поле исследователь может быть уверен, что находится в пределах одного ландшафта до тех пор, пока видит однотипное сочетание одних и тех же урочищ. Как только появляются новые урочища или изменяются закономерности размещения тех же самых урочищ, нужно быть очень внимательным, ибо где-то здесь проходит граница ландшафтов или их крупных морфологических частей — местностей. Чтобы окончательно решить вопрос о ранге разделяемых границей комплексов, нужно проанализировать весь фактический материал, характеризующий территорию исследования. Представляя собой систему взаимосвязанных сравнительно простых ПТК (перечень которых может не исчерпываться рассмотренными выше единицами), ландшафт в то же время сам является составной частью более сложных ПТК и в конечном счете частью географической оболочки. Из этого исходил, давая свое определение ландшафта, А. Г. Исаченко: «Ландшафт — это генетически обособленная часть ландшафтной области, зоны и вообще всякой крупной региональной единицы, характеризующаяся однородностью как в зональном, так и в азональном отношении и обладающая индивидуальной структурой и индивидуальным морфологическим строением» (1965, с. 117). Зонально-азональная однородность находит свое выражение в общности фундамента ландшафта, макрорельефа и климата. Она включает и генетическое единство, так как лишь в результате всей предшествующей истории развития формируется современный облик ландшафта. Таким образом, оба приведенных определения исходят из одних и тех же черт ландшафта и как бы дополняют друг друга. В 1991 г. А. Г. Исаченко дал близкое по смыслу краткое определение ландшафта, базирующееся на системном подходе: «Ландшафт — генетически единая геосистема, однородная по зональным и азональным 37 признакам и заключающая в себе специфический набор сопряженных локальных геосистем» {с. 111). Примером ландшафта может служить Дроковское предополье, расположенное на правом берегу р. Ипуть — притока Десны (рис. 5). Ландшафт занимает в ряду соподчиненных ПТК особое узловое положение. Это отмечали в своих работах Н. А. Солнцев, А. А. Григорьев, А. Г. Исаченко, В.Б.Сочава и ряд других исследователей. Н. А. Солнцев считал ландшафт основной единицей географии, с которой собственно и начинается система таксономических единиц, а более мелкие, чем ландшафт, комплексы он называл морфологическими частями ландшафта. А. А. Григорьеву принадлежит мысль о том, что зональность и азональность как основные закономерности дифференциации географической оболочки прослеживаются лишь до уровня ландшафта. Позднее ее развивал А. Г. Исаченко, отмечая, что все более мелкие ПТК обособляются в соответствии с местными закономерностями, изменяющимися от ландшафта к ландшафту. Согласно В.Б.Сочаве, ландшафт (макрогеохора), с одной стороны, венчает ряд ПТК топологического уровня, а с другой — им начинается ряд единиц регионального уровня, а на стыке единиц регионального и планетарного уровня подобное ландшафту узловое положение занимает физико-географическая страна, или область, по терминологии В. Б. Сочавы. Таким образом, в единой иерархической системе таксономических единиц намечаются три уровня организации — планетарный {глобальный), региональный и топологический {локальный), обусловленные разными закономерностями дифференциации географической оболочки на каждом из этих уровней. Это положение признается сейчас многими физико-географами. Наиболее резко против него выступал лишь Д.Л.Арманд (1975), считая, что природа нераздельна, а поэтому таксономическая система не имеет «площадок» или «основных единиц». Закономерности физико-географической дифференциации на разных уровнях и ступенях выявлены еще далеко не достаточно, что приводит к параллельному созданию таксономических систем ПТК, отличающихся как по количеству ступеней, так и по их со-подчиненности. В зависимости от масштаба работ в центре внимания исследователя могут быть не только ландшафты и их морфологические единицы, но и более крупные природные территориальные комплексы: физико-географические районы, провинции, зоны (отрезки зон внутри равнинных стран, называемые часто зональными областями) или горные области, физико-географические страны. Комплексы планетарного уровня вплоть до географической оболочки в целом вместе с аквальными комплексами также изучают физико-географы. Разные уровни организации ПТК влияют и на специфику их исследования. Изучение ПТК топологического уровня (ландшафта и его морфологических единиц) базируется главным образом на первичной информации, собираемой непосредственно в поле, и ведется преимущественно индуктивным методом (от частного к об-Щему). Планетарный уровень исследования строится в основном на использовании метода дедукции (от общего к частному) и вторичной (переработанной и обобщенной) информации о всей гео- графической оболочке в целом и об отдельных компонентных оболочках. Комплексы этого уровня изучаются в камеральных условиях. При изучении ПТК регионального уровня исследование ведется путем сочетания дедуктивного (от более крупных единиц к более мелким, обособившимся в их пределах) и индуктивного (анализа внутренней структуры изучаемых ПТК) методов и основывается преимущественно на вторичной информации о различных компонентах природы и ПТК планетарного и топологического уровней. Исследование ПТК регионального уровня проводится преимущественно в камеральных условиях, доля полевых исследований при этом сокращается по мере возрастания ранга изучаемых комплексов. Основным методом их изучения является физико-географическое районирование. В связи с тем что специфика более крупных ПТК определяется особенностями ландшафтов, их слагающих, изучение любых комплексов регионального уровня не может производиться на основе только компонентного анализа без внимательного рассмотрения ландшафтной структуры территории, раскрывающей степень разнообразия и внутреннее строение каждого региона. В понятие структура ПТК входит не только состав его элементов, но и связи — вещественные, энергетические, информационные. Каждый ПТК обладает своей специфической структурой — устойчивой упорядоченностью свойств, сохраняющейся при различных внутренних и внешних изменениях. Внутренние связи ПТК — связи между его структурными (составными) частями, т.е. между компонентами природы и между входящими в его состав более мелкими комплексами — определяют целостность и индивидуальность ПТК. Внешние связи — это связи между соседними одноранговыми комплексами, между изучаемым комплексом и вмещающим его более сложным ПТК и т.д. Они обеспечивают связи изучаемого комплекса с окружающей средой. Следовательно, каждый ПТК любой размерности — открытая система, получающая вещество, энергию и информацию извне (от своей среды, окружения) и передающая ее другим ПТК (геосистемам). Различают связи прямые и обратные (А. Д. Арманд, 1988). Обратные связи в свою очередь делятся на положительные и отрицательные. При положительных связях эффект внешнего воздействия усиливается системой и может привести к ее быстрому разрушению, ибо она сама работает на разрушение. Примером может служить образование лавин. Отсюда и выражение — лавинообразный процесс. При отрицательной обратной связи эффект внешнего воздействия ослабляется, «гасится» системой, а сама система продолжает оставаться в пределах своего инварианта (В.Б.Сочава, 1963). Отрицательные обратные связи — это сопротивление системы внешнему воздействию. Они обеспечивают устойчивость ПТК, его способность оставаться самим собой, несмотря на внешние воздействия. При вычленении ПТК необходимо руководствоваться как закономерностями внутренних взаимосвязей комплекса, создающих его качественную определенность, так и взаимодействиями изучаемого комплекса с окружающими его ПТК. Внутренние закономерности лучше прослеживаются при ближайшем рассмотрении и детальном изучении ПТК. Чтобы их познать, исследователь должен находиться внутри комплекса. А чтобы обнаружить его отличие от соседних комплексов, нужно взглянуть на него со стороны, сравнить с другими комплексами, охватить единым взглядом весь комплекс на фоне окружающих его ПТК. Долгое время такой «взгляд со стороны» оказывался возможным лишь в отношении самых мелких ПТК — фаций, подурочищ и урочищ. В то же время достаточно крупные ПТК можно было изучать, лишь находясь внутри комплекса и не имея возможности взглянуть на него с некоторого расстояния, увидеть его на фоне окружающих ПТК. Использование авиации позволило исследователям «подняться над» крупными урочищами, местностями и ландшафтами, следствием чего явилась большая объективность в проведении границ этих комплексов. И лишь выход человека за пределы географической оболочки, в Космос, позволил даже на такие крупные комплексы, как физико-географические страны, взглянуть «со стороны» как на части географической оболочки, увидеть их в сравнении друг с другом, в результате чего многие границы между довольно крупными и сложными ПТК, которые при наземных исследованиях считались переходными полосами, оказались хорошо заметными, четкими, линейными на аэрофото- и космоснимках. Таким образом, сложность разграничения ПТК заключается в том, что исследователь должен одновременно учитывать множество как внутренних, так и внешних связей комплекса. Стремление глубже познать отдельные специфические черты ПТК или влияние определенного фактора на его особенности нередко заставляет исследователя сосредоточить внимание на ограниченном наборе свойств и связей комплекса. В связи с этим появилось представление о различных структурах ПТК: пространственных, временных, функциональных и др. (Г.Гаазе, К.Г.Раман, Н.А. Солнцев, Э. М. Раковская и др.). Внутри каждой отдельной структуры связи теснее, чем между разными структурами. Именно этим и вызвано относительное обособление самих структур, их вычленение из сложного клубка разнообразных связей ПТК, относительная их самостоятельность. В то же время все структуры в ПТК тесно переплетены между собой, взаимосвязаны и взаимообусловлены. Они образуют не случайный конгломерат структур, а единую интегральную структуру. Благодаря ей и возникает качественная определенность и пространственная ограниченность ПТК, его внутренняя упорядоченность и своеобразие. Эта сложная ин- тегральная структура ПТК, включающая все многообразие его связей, может быть названа ландшафтной структурой (Э. М.Ра-ковская, 1980). Сложность и многоплановость ландшафтной структуры создают объективные предпосылки для возникновения разных направлений ее исследования, обусловливают необходимость сочетания различных аспектов изучения ландшафтной структуры для глубокого познания сущности ПТК, разработки научно обоснованных географических прогнозов и рекомендаций по рациональному использованию различных ПТК. 2.2. Природные аквальные комплексы Природные аквальные комплексы (ПАК) — это прежде всего комплексы Мирового океана. На суше ПАК занимают сравнительно небольшую площадь. Мировой океан — система глобальной размерности в суперсистеме географической оболочки. Ландшафтная оболочка, представляющая собой на суше более или менее единую тонкую пленку, в Мировом океане как бы раздваивается, образуя приповерхностные и придонные ПАК. Долгое время большие глубины считались безжизненными. Теперь известно существование как глубоководных организмов, так и мигрирующих, способных погружаться на большие глубины. Сравнительно недавно был открыт особый мир «черных курильщиков» — подводных вулканов и источников термальных вод, приуроченных в основном к срединным океаническим хребтам и обладающих своими биоценозами, в числе которых есть автотрофные хемосинтезирующие организмы. Тем не менее следует отметить особую важность приповерхностных акваль-ных комплексов как среды обитания фотосинтезирующего фитопланктона — основы океанических трофических цепей. Специфика природных аквальных комплексов. В отличие от ПТК, состоящих, по Н.А.Солнцеву, из пяти основных компонентов, в ПАК этот ряд сокращен. Геолого-геоморфологическая основа оказывает воздействие на аквальные комплексы открытого Океана только как глобальный или региональный фактор. Она может считаться компонентом лишь для придонных ПАК, в то время как ее влияние на другие локальные комплексы косвенное. Атмосфера как компонент отсутствует в придонных ПАК, хотя как внешний фактор очень важна для мелководных ПАК. С приповерхностными ПАК атмосфера имеет самый непосредственный контакт. Почва в ПАК отсутствует. Водные массы — главнейший компонент ПАК. Основные параметры водных масс — температура, соленость (и их распределение), количество растворенного кислорода и других газов, про- зрачность, плотность, содержание элементов минерального питания и органического (планктона), динамика водной среды. Динамика Океана тесно связана как с планетарными свойствами Земли (шарообразность, огромная масса, сила тяжести, параметры вращения и т.д.), так и с динамикой атмосферы. Известны приповерхностные, глубинные, донные, восходящие (апвеллинг) и нисходящие (даунвеллинг) течения, волновые перемещениях водных масс. Вследствие этого ПАК намного динамичнее, чем ПТК. Даже геолого-геоморфологическая основа донных аквальных комплексов может быстро (иногда катастрофически) меняться, например во время штормов в прибрежной полосе, при наличии мутьевых течений, во время весеннего половодья рек в подводных дельтах и т.д. Известны «кольца» Гольфстрима — течения, отделяющиеся от основного и способные к автономному, относительно долгому существованию. «Синоптические вихри» Мирового океана исследовались академиком Л. М. Бреховских. Динамические процессы повсеместны и очень различны по характеру, скорости и изменяются от места к месту. Поэтому, наблюдая тем или иным способом ПАК и пытаясь выявить его границы, фиксируют «сиюминутную» картину. Необходимо еще определить пределы пространственного изменения комплекса, его вариативность. Только массовые данные могут дать представление о среднестатистических параметрах формы, размерности, размещения и внутреннего строения ПАК. Фито- и зоокомпоненты распределены очень неравномерно: большое разнообразие и обилие в приповерхностных ПАК (на границах различных сред), на мелководьях, в зонах апвеллинга (подъема глубинных вод к поверхности океана) и намного меньше на больших глубинах. Как и зеркальные отражения в воде, свойства водных систем во многом противоположны свойствам наземных. Симметрично их расположение относительно поверхности Земли. Максимальное количество зеленых растительных организмов приурочено к «фокусной пленке» географической оболочки — среде раздела и взаимопроникновения компонентов и веществ разного агрегатного состояния. Здесь как бы сфокусированы солнечные лучи. Практически одинакова мощность фотосинтезирующего слоя: на суше от нескольких сантиметров до сотни метров (в джунглях) и в Океане от нескольких метров до 150 — 200 м. Максимальное количество фитопланктона находится у поверхности и быстро (по экспоненциальному закону) убывает с глубиной, так что трудно определить этот рубеж. Хотя теплые приэкваториальные воды, как и природные комплексы суши, отличаются большим разнообразием видов организмов, по количеству биомассы они вовсе не являются лидерами. Как раз в низких широтах находятся огромные «океанические пустыни» (рис. 6). Количество биомассы в океане имеет более высокие значения в высоких широтах — около 60-й параллели обоих
|
||||||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 826; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.239.251 (0.016 с.) |