Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Пролиферация и дифференцировка клеток в ходе иммунных ответов.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Путь Th1: Основные черты. 1. в паракортикальных зонах лимфоузлов и периартериальных пространствах селезенки идут морфологические изменения: малые лимфоциты заменяются бластными клетками, затем к 10 дню большинство клеток опять становится малыми лимфоцитами. 2. пролиферирующие и дифференцирующиеся лимфоциты усиливают экспрессию LFA1, CD2, появляется молекула VLA – 4(CD49d), утрачивают экспрессию L – селектинов. В результате образуются эффекторные Т – лимфоциты двух типов: · CD4Т – клетки воспаления(по старой номенклатуре Т – ГЗТ - лимфоциты). По существу это перезревшие Th1, со способностью секретировать большое количество IFNγ. Работают против антигена, индуцируя хроническое иммунное воспаление в очаге. · Цитотоксические CD8Т – лимфоциты(по старой номенклатуре Т - киллеры). Работают против антигенов, индуцируя апоптоз клеток – мишеней, содержащих антиген. Срок жизни Т – эффекторов(CD4, 8) – несколько суток. Одновременно образуются соответствующие им Т – клетки памяти, живущие пожизненно. Образуются к 10 дню инфекционного эпизода. Путь Th2(гуморальный ответ). Основные черты. 1. В фолликулах лимфоузла и MALT происходят морфологические изменения В – клеток, которые превращаются в иммунобласты, затем лимфоплазмоидные клетки и, наконец, в плазматические клетки. Плазмоциты мигрируют в красный костный мозг для синтеза антител. На высоте иммунного ответа один плазмоцит синтезирует до 2000 молекул иммуноглобулинов в секунду. 2. переключение изотипов иммуноглобулинов
Повышение аффинности иммуноглобулинов за счет отмены апоптоза бластов с высокоаффинными BCR. Плазмоциты характеризуются высокой частотой соматических мутаций(2 – 4%). В ходе иммунного(гуморального) ответа происходит позитивный отбор тех плазмоцитов, которые способны синтезировать наиболее комплементарные антитела к антигенам. Срок жизни плазмоцитов – несколько суток. Одновременно образуются пожизненные В – клетки памяти и долгоживущие плазматические клетки(до 1.5 лет). Т – эффекторы CD4, CD8 образуются к 10 дню инфекционного эпизода. Лекция № 8. Регуляция иммунного ответа. Иммунные ответы являются регулируемыми и саморегулируемыми процессами. Значение регуляции заключается: 1. достигается нужный уровень специфичности эффекторов и продолжительности иммунной памяти 2. обеспечение необходимого направления иммунных ответов, которые в наибольшей степени отвечают биологической целесообразности(преобладание Т – клеток или гуморальный ответ, активный ответ или толерантность) 3. обеспечивается защита организма от нежелательных последствий активации иммунной системы: воспаление с деструкцией, старт аллергии, начало опухолевого роста из иммунокомпетентных клеток. Формы регуляции иммунных ответов 1. внутрисистемная(саморегуляция) ü специфические механизмы · механизм отрицательной обратной связи · механизм сетевых идиотип – антиидиотипических взаимоотношений ü неспецифические – работают по парадигме Th1 ↔ Th2 и включают функционирование цитокинов и хемокинов, а также костимулирующие молекулы 2. печеночная регуляция(через метаболизм) 3. регуляция со стороны эндокринной системы 4. нейрорегуляция(со стороны ЦНС через медиаторы нервной системы) 5. генетическая регуляция: ü регуляция специфичности антител и TCR ü регуляция силы иммунных ответов(количества однотипных молекул); сила иммунного ответа зависит от набора HLA1 and HLA2 в хромосоме.
Саморегуляция иммунных ответов. 1. механизм отрицательной обратной связи в системе «антиген – эффекторная молекула» этот механизм является ведущим механизмом окончания иммунного ответа и служит типичным примером из теории управления биологическим действием(примером отрицательного ретроингибирования). Выработка высокоспецифичных эффекторных молекул приводит к эффективной элиминации нативного антигена и антиген представляющих клеток. После чего дальнейшая продукция эффекторных молекул заканчивается, так как устраняется причина. Эксперименты, иллюстрирующие отрицательную обратную связь: · при введении животному одновременно антигена + IgG происходит затухание гуморального ответа. Если удалить путем плазмофореза IgG, то иммунный ответ будет довольно длительным(стимуляция иммунного ответа) · при введении антиген + IgM наблюдается пролонгация иммунного ответа 2. механизм сетевых взаимодействий(N. Ierne, 1984 г., идиотип – антиидиотипическая теория). Существует 2 типа антиидиотипических антигенов: · гомоантиидиотипические антигены – имеют специфичность к Fab – фрагменту антител · эпиантиидиотипичесикие антигены – антитела против каркасных структур антител(имеют специфичность к каркасным структурам Fab). Гомоантиидиотипы могут рассматриваться как внутренний образ антигена. Оба варианта антиидиотипических антигенов могут взаимодействовать с одним и тем же эффектором. Выступая в качестве поверхностных рецепторов клеток, антиидиотипы взаимодействуют со своими идиотипами на других участках(лиганд - рецептор), образуя сети. Эти сети находятся в динамическом равновесии, обеспечивая стабильность спокойного состояния. Эта система направлена на восстановление баланса при попадании антигена. Система сама по себе подвижна, но стабильна. При попадании антигена она нарушается, потом снова восстанавливается. Антиидиотипические антигены в сверхмалых концентрациях – стимулируют иммунный ответ, а в малых концентрациях – супрессируют.
Парадигма Th1 – Th2. Th2 (регулируют гуморальный ответ)→IL4, 5, 6, 10, 13→ IgM, IgE ↑ ↓ IL4, CTLA4 IgG, IgA ↑ Th0 ↓ IL12, CD28+ ↓ Th1 (регулируют Т – клеточный ответ, маркер - TNFγ) →IL2, 18, TNFβ→ CD8(Tk) and CD4 (Тгзт) Th1 также участвуют в образовании(синтезе) IgG. IL12, CD28 – вырабатывается макрофагами, дендритными клетками и определяет путь дифференцировки Th1. IL4 – от В – лимфоцитов и тучных клеток. Цитокины. Это белки с небольшой молекулярной массой, образуются в клетках иммунной системы. Главным образом – в лимфоцитах(фабрика цитокинов). Также образуются в печени, клетках ЦНС, эпителии. Действуют подобно гормонам иммунной системы. Действие цитокинов в основном паракринное или аутокринное. Только три цитокина имеют эндокринный эффект: · IL1 · IL6 · TNF Историческая группировка цитокинов. 1. интерлейкины(описано 27) 2. интерфероны – IFNα,β,γ. IFNα,β – относят к 1 – ому типу, IFNγ – относят ко 2 – ому типу. 3. колониестимулирующие факторы(лейкопоэтины) · макрофагальный – M – CSF · моноцитарно – гранулоцитарный – G – MCSF · гранулоцитарный – G – CSF 4. фактор некроза опухолей – TNFαβ 5. хемокины – очень много(классификация на сайте). Общие свойства цитокинов. 1. плейотропность и многофункциональность 2. аутокринный и паракринный, реже - эндокринный способ действия. 3. взаимозаменяемость и синергизм среди одних и антагонизм среди других 4. провоспалительный или противовоспалительный эффекты 5. кратковременность эффекта шединг – слущивание рецепторов. Функциональные профили цитокинов. · Провоспалительные – IL1α, IL1β, IL6, IL8, IL12, IL18, IFNγ, TNFα,β, G – MCSF · Противовоспалительный профиль – рецепторный антагонист IL1; IL10, TFRβ, IFNα,β. *: IL4 – мощный провоспалительный цитокин для атопиков, но в очаге воспаления 4 типа он мощный противовоспалительный фактор(по Джелу - Кумбсу). · Ростовые факторы – IL7 – для раннего лимфопоэза По модели генетического нокаута у мышей по IL7 дает картину тотального иммунодефицита IL2 – для позднего лимфопоэза, для прайминга · Пирогенные факторы: IL6, IL1, TNFα,β, IFNα,β,γ. · Хемокины – IL8, макрофагальные хемоаттрактантные белки(MCP1 - 5), макрофагальные воспалительные белки(MIP1 - 3), Rantes. · Ключевые цитокины для отдельных клеток: - клетки – активаторы макрофагов IFNγ - клетки – активаторы нейтрофилов IL8 - клетки цитокины для дифференцировки Th1 – IL12 - клетки – цитокины для образования Th2 – IL4 - клетки – цитокины для эозинофилов – IL5 Лекция № 9. Интерлейкины. IL1. Существуют IL1α, IL1β, IL1ra(рецепторный антагонист). В модели с генетическим нокаутом у животных невозможно развитие острофазной реакции. Эти интерлейкины вырабатываются большинством клеток иммунной системы, но основные продуценты – макрофаги, эндотелиоциты, фибробласты, нейтрофилы. Эти интерлейкины многофункциональны: · стимулируют все фазы иммунного ответа · воспаления · вызывают лейкоцитоз · в больших концентрациях вызывают инфекционно – токсический шок · стимулируют острофазную реакцию IL1α – мембрансвязанная форма IL1β – свободносекретируемая молекула, которая попадает в интрацеллюлярное пространство IL1ra – связываясь с рецептором для IL1α,β, ингибирует активность IL1α,β. IL2. Вырабатывается Т – лимфоцитами. Ключевой ростовой фактор для дифференцировки клеток в ходе иммунного ответа(при клональной экспансии), стимулирует активность NK – клеток. В модели с генетическим нокаутом у мышей развивается иммунодефицит преимущественно по Т – звену, частично по В – звену. Рецептор для IL2(IL2R) экспрессируется на лимфоцитах и состоит из трех цепей – α(CD25), β(CD122), γ(CD132). IL3. Мультиколониестимулирующий фактор. Стимулирует лейкопоэз на ранних стадиях. Вырабатывается Т – лимфоцитами, тучными клетками, эпителиоцитами. У мышей с генетическим нокаутом нарушен лейкопоэз и дифференцировка эозинофилов. IL4. Вырабатывается Th2, тучными клетками, костномозговыми стволовыми клетками. СТИМУЛИРУЕТ РОСТ И ДИФФЕРЕНЦИРОВКУ Th2. Индуцирует пролиферацию В – лимфоцитов и переключение на синтез IgE, IgG4. В модели с генетическим нокаутом отсутствуют Th2, снижена концентрация IgE. IL5. Вырабатывается Th2, тучными клетками, эозинофилами. Ключевой фактор роста и созревания эозинофилов. В модели с генетическим нокаутом снижено количество эозинофилов, IgE, подавление поздней фазы атопического воспаления. IL6. Вырабатывается очень многими клетками. Многофункционален, дополняет активность IL1. Регулирует острофазную реакцию. В модели с генетическим нокаутом отсутствует острофазная реакция, снижается синтез IgA. IL7. Вырабатывается стволовыми клетками. Ключевой ростовой фактор лимфоцитов на ранних стадиях(фактор commitment). В модели с генетическим нокаутом развивается синдром «тяжелого комбинированного иммунодефицита»(SCID – severe combined immunodeficiency). IL8. Вырабатывается очень многими клетками – макрофагами, фибробластами, эндотелиоцитами. Регулируют активность нейтрофилов(хемотаксис, поглощение, участие в воспалении). Стимулирует новообразование капилляров, что способствует метастазированию опухоли. В модели с генетическим нокаутом – нейтропения. IL9. Вырабатывается CD4+ лимфоцитами. Один из ключевых факторов для пролиферации и дифференцировки тучных клеток. Стимулирует тромбоцитарный росток. Очень активен при мегакариоцитарном лейкозе. IL10. Вырабатывается Th2, В – клетками, макрофагами. Блокирует образование Th1, инактивирует макрофаги, стимулирует продукцию IgA. В модели с генетическим нокаутом развивается тяжелый энтероколит и анемия, а также задержка роста животных. IL11. Вырабатывается костномозговыми стволовыми клетками. Стимулирует пролиферацию мегакариоцитов. Наблюдаются большие концентрации при плазмоцитоме(миеломная болезнь). IL12. Вырабатывается антиген – представляющими клетками. Ключевой фактор дифференцировки Th1 из Th0. Индуцирует продукцию IFNγ Т – лимфоцитами и NK – клетками, активирует NK – клетки. В модели с генетическим нокаутом отсутствуют Th1. IL13. Вырабатываются Th2. Стимулирует пролиферацию и дифференцировку В – лимфоцитов, продукцию IgM, IgE, IgG4, продлевает жизнь макрофагам. IL14. Вырабатывается Т – лимфоцитами. Стимулирует рост В – клеток. IL15. Вырабатывается макрофагами, эпителиоцитами. Эффект сходен с эффектом IL2. Активирует NK – клетки. IL16. Вырабатывается CD8 – Т – клетками, но рецептором для него является молекула CD4. Это хемокин для всех Т – лимфоцитов(стимулирует миграцию Т - клеток). IL17. Вырабатывается В – клетками памяти. Стимулирует продукцию G – CSF, IL6, 8, простагландина Е2. IL18. Вырабатывается макрофагами, остеобластами, гепатоцитами. Стимулирует синтез IFNγ, активирует NK – клетки, является кофактором для дифференцировки Th1.
Колониестимулирующие факторы. · GM – CSF(гранулоцитарно – моноцитарный колониестимулирующий фактор). Вырабатывается CD4 – Т – клетками, макрофагами, эндотелиоцитами. Стимулирует моно – и гранулоцитопоэз на ранних стадиях. Выраженная провоспалительная активность. В модели с генетическим нокаутом развивается моно – и гранулоцитопения, альвеолярный протеинозис. · G – CSF. Вырабатывается макрофагами, эндотелиоцитами. Стимулирует гранулоцитопоэз. · M – CSF Вырабатывается макрофагами и эндотелиоцитами. Стимулирует моноцитопоэз. Интерфероны(IFN). IFNα,β – относятся к первому типу. Синтезируются нейтрофилами, макрофагами, фибробластами, эпителиоцитами, лимфоцитами. IFNα – лейкоцитарный IFNβ – фибробластный, но это разделение некорректно. Противовирусная, противоопухолевая, радиопротективная активности. Оказывает противовоспалительный эффект. Стимулирует активность NK – клеток. В модели с генетическим нокаутом снижается противовирусная резистентность. IFNγ – относится к типу 2. Вырабатывается лимфоцитами(Th1), В – клетками, NK – клетками. Ключевой цитокин, участвующий в регуляции иммунной системы; ключевой активатор макрофагов. Оказывает противовирусное, противоопухолевое действие, но имеет провоспалительную активность. Фактор некроза опухоли(TNF). Выделяют 2 типа: TNFα(вырабатывается макрофагами) и TNFβ(вырабатывается лимфоцитами). TNFα – кахексин TNFβ – лимфотоксин Оба являются многофункциональными цитокинами. Участвуют в регуляции многих иммунных реакций, подобно IFNγ. В больших концентрациях являются самыми сильными эндотоксинами со стороны иммунной системы, которые могут вызвать инфекционно – токсический шок(возможен летальный исход). В модели с генетическим нокаутом отсутствуют лимфоузлы, гипоспления, но есть резистентность к септическому шоку.
Хемокины. По расположению цистеина в полипептидной цепочке делятся на 4 класса(классифицировать по клеточному варианту невозможно): · С · СС · СХС · СХ3С IL8 – хемокин(CXCL8). MCP1(macrophage chemoattractant protein) – ССХL2. Вырабатывается макрофагами, эндотелиоцитами, остеобластами. Отвечает за накопление макрофагов в очаге воспаления. MIP1α(CCL3). MIP1β(macrophage inflamanatory protein) – CCL4. Ответственен за активацию эндотелия и подъем температуры в воспалительном очаге. Вырабатывается макрофагами.
Роль печени в регуляции иммунного ответа. В печени есть все виды иммунокомпетентных клеток. Печень – «гигантский макрофаг», который фильтрует антигены и поддерживает естественную толерантность к аутоантигенам, антигенам пищи, антигенам плода и т. д. Основные функции печени: 1. антигенное представление печени. Синтез IL12, TNF, CSF. 2. биотрансформация низкомолекулярных ксенобиотиков с помощью монооксигеназной системы(цитохром Р450), их упаковка до состояния антигенности. 3. клиренс иммунных комплексов и торможение аллергических реакций 3 типа. 4. выделение супрессорных факторов, важных для окончания иммунного ответа(простагландин Е2, α - фетопротеин). 5. апоптоз аутосенсибилизированных лимфоцитов за счет субпопуляций NK – клеток(CD56hi, CD16lo, NKT - клетки). 6. биосинтез структурных компонентов цитолемм клеток иммунной системы. 7. участие в В – лимфопоэзе в эмбриогенезе. Лекция № 10.
|
|||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-15; просмотров: 795; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.30.14 (0.012 с.) |