Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Задачи По цветным металлам и сплавамСодержание книги
Поиск на нашем сайте № 10. Многие изделия изготавливают из латуни вытяжкой из листа в холодном состоянии. Иногда в изделиях обнаруживаются трещины, возникающие без приложения внешних нагрузок (так называемое «сезонное растрескивание»). На рис. 1 показана деталь после глубокой вытяжки и после растрескивания при вылеживании.
Объяснить сущность этого явления и указать способы его предубеждения. Подобрать марку латуни, не подверженной сезонному растрескиванию. Кроме того, описать структуру, технологические свойства α и α + β'-латуней. Решение задачи № 10 Латуни в зависимости от содержания цинка и структуры можно разделить на три класса: 1. α-латуни....... До 39,5% Zn 2. α + β'-латуни..... От 39,5 до 45,7% Zn 3. β'-латуни....... От 45,7 до 51% Zn Увеличение содержания цинка изменяет структуру и свойства латуни (рис. 2). Увеличение содержания цинка до определенного предела повышает пластичность и прочность. Пластичность достигает максимальных значений при 30—32% Zn, а прочность — при 40%. При дальнейшем увеличении содержания цинка прочность и пластичность снижаются. Это изменение свойств определяется свойствами соответствующих фаз, образующихся при введении цинка. α-фаза представляет твердый раствор типа замещения, пластичность и прочность которой возрастают по мере увеличения содержания цинка. β'-фаза — твердый раствор на базе электронного соединения с центрированной кубической решеткой и упорядоченным расположением атомов. Эта фаза отличается повышенной хрупкостью и твердостью; поэтому образование β-фазы снижает вязкость и повышает твердость.
Рис. 2. Механические свойства латуни в зависимости от содержания цинка: а - литая латунь; б — катаная и отожженная латунь
При нагреве выше 450° С β'-фаза превращается в неупорядоченный твердый раствор β, отличающийся большей пластичностью, чем β'-фаза. Из диаграммы состояния видно, что α + β'-латуни приобретают при таком нагреве однородную структуру β-твердого раствора, а следовательно, и большую пластичность. Эти свойства фаз определяют технологический прогресс изготовления изделий из различных сортов латуни, а также их назначение. Изделия из α-латуни изготавливают главным образом холодной или горячей деформацией; обработка резанием не дает достаточно чистой поверхности. Изделия из α + β'-латуни изготавливают горячей (прессование, штамповка) или холодной деформацией (но без вытяжки) или обработкой резанием. В результате последующего отжига прочность сплава понижается, но пластичность возрастает (рис. 3). Холодная деформация латуни создает в изделии остаточные напряжения. Они возникают и в результате местной холодной деформации (при изгибе деталей, чеканке, развальцовке и т. п.).
Рис. 3. Механические свойства латуни Л68 в зависимости: а - от степени деформации; б - от температуры отжига
При вылеживании или эксплуатации в латунных изделиях иногда возникают трещины. «Сезонное растрескивание» наблюдается главные образом в латунях с содержанием более 20% Zn и отчетливо обнаруживается, например, в полых изделиях, прутках и т. д. Сезонное растрескивание усиливается в химически активных средах, особенно в парах аммиака, ртутных солях, ртути, мыльной воде и т. д. Образование трещин является результатом совместного действия остаточных напряжений, созданных холодной деформацией (наиболее опасны растягивающие напряжения), и химически активных сред. Для предохранения от сезонного растрескивания нужен отпуск с нагревом до 200—300° С; это снимает большую часть остаточных напряжений и незначительно снижает прочность. Но в условиях изготовления и монтажа конструкций с применением развальцовки, гибки и т. д. не всегда возможно избежать возникновения местных, даже незначительных деформаций, а, следовательно, и сезонного растрескивания. В таких случаях применяют более дорогие (и имеющие меньшую прочность), но не склонные к сезонному растрескиванию латуни Л96 и Л90. Латуни Л96 и Л90 обладают высокой теплопроводностью. Латуни можно заменить алюминиевой бронзой, не склонной к сезонному растрескиванию и обладающей аналогичными значениями прочности и пластичности. № 11. Гребные винты морских пароходов имеют сложную форму и очень массивны, например масса винта современного крупного океанского теплохода достигает 30—50 т. Наметить схему технологии изготовления винта, учитывая его форму. Исходя из этой схемы и условий работы винта в морской воде, подобрать состав сплава и указать его структуру и механические свойства. № 12. Некоторые детали арматуры турбин, котлов гидронасосов и т. п., работающие во влажной атмосфере и изготавливаемые массовыми партиями литьем, имеют сложную форму. В процессе литья должна быть обеспечена максимальная точность размеров. Указать состав применяемого для этой цели цветного сплава, его структуру и механические свойства; привести способ литья, позволяющий создать требуемую высокую точность с минимальной последующей механической обработкой. Привести химический состав стали для форм, применяемых для литья выбранного сплава, и указать режим термической обработки, а также структуру стали в готовом изделии. № 13. Многие детали приборов и оборудования, подверженные действию морской воды, изготавливают из цветного сплава путем холодной деформации в несколько операций. Подобрать сплав, стойкий против действия морской воды, и привести его химический состав. Указать режим промежуточной термической обработки выбранного сплава и привести его механические свойства после деформации и термической обработки. Сравнить состав стали, стойкой против действия морской воды; привести режим ее термической обработки, механические свойства и структуру. № 14. Трубки в паросиловых установках должны быть стойки против коррозии. Подобрать марку сплава на медной основе, пригодного для изготовления трубок и не содержащего дорогих элементов; привести состав выбранного сплава. Указать способ изготовления трубок и сравнить механические свойства выбранного сплава, получаемые после окончательной обработки, с механическими свойствами стали, стойкой против коррозии в тех же средах. ЛИТЕРАТУРА 1. Геллер Ю.А., Рахштадт А.Г. Материаловедение. – М.: Металлургия, 1975. - 447с., ил. 2. Геллер Ю. А. Инструментальные стали. М.: Металлургия, 1968. - 568 с., ил. 3. Гуляев А. П. Металловедение. М.: Металлургия, 1966.- 480 с., ил. 4. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1973. - 511 с., ил. 5. Материалы в машиностроении. Т. 1—5. М.: Машиностроение, 1969—1970. 6. Металловедение и термическая обработка. Справочник. Т. 1—2. М.: Металлургиздат, 1961—1962. 7. Полухин П.И., Горелик С.С., Воронцов В.К. Физические основы пластической деформации. – М.: Металлургия, 1982. – 584 с., ил. 8. Рахштадт А. Г. Пружинные стали и сплавы. М.: Металлургия, 1971. - 496 с., ил. 9. Рогачева Л.В. Материаловедение. – М.: Колос-пресс, 2002. 10. Савостицкий Н.А., Амирова Э.К. Материаловедение швейного производства. – М.: Академия, 2004. 11. Справочник металлиста. Т.3. – М.: Машгиз, 1959. 12. Технология металлов и конструкционные материалы/ Под ред. Б.А. Кузьмина. - М.: Машиностроение, 1989. – 496 с., ил. 13. Технология конструкционных материалов/ Под ред. А.М. Дальского.- М.: Машиностроение, 1985. – 448с., ил. 14. Филинов С.А., Фиргер И.В. Справочник термиста. – Л.: Машиностроение, 1969. -320 с., ил. 15. Химушин Ф. Ф. Нержавеющие стали. Изд. 2-е. М.: Металлургия, 1967. - 798 с., ил. 16. Химушин Ф. Ф. Жаропрочные стали и сплавы. Изд. 2-е. М.: Металлургия, 1969. - 749 с., ил. 17. Хуго И. и др. Конструкционные пластмассы. Свойства и применение. – М.: Машиностроение, 1970. – 336 с., ил. 18. Шмыков А. А. Справочник термиста. Изд. 4-е. М.: Машиностроение, 1961.- 392 с., ил.
Содержание
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Последнее изменение этой страницы: 2016-12-28; просмотров: 770; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.108 (0.009 с.) |