Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Химико-термическая обработкаСодержание книги
Поиск на нашем сайте
Целью химико-термической обработки является получение поверхностного слоя стальных изделий, обладающего повышенными твердостью, износоустойчивостью, жаростойкостью или коррозионной стойкостью. Для этого нагретые заготовки подвергают воздействию среды, из которой путем диффузии в поверхностный слой заготовок переходят нужные для получения заданных свойств элементы: углерод, азот, алюминий, хром, кремний и др. Эти элементы диффундируют в поверхностный слой лучше, когда очи выделяются в атомарном состоянии при разложении какого-либо соединения. Подобное разложение легче всего происходит в газах, поэтому их и стремятся применять для химико-термической обработки стали. Выделяющийся при разложении газа активизированный атом элемента проникает в решетку кристаллов стали и образует твердый раствор или химическое соединение. Наиболее распространенными видами химико-термической обработки стали являются цементация, азотирование, цианирование. 10.1.Цементация. Цементацией называется поглощение углерода поверхностным слоем заготовки, который после закалки становится твердым; в сердцевине заготовка остается вязкой. Цементации подвергают такие изделия, которые работают одновременно на истирание и удар. Существуют два вида цементации: цементация твердым карбюризатором и газовая цементация. При цементации твердым карбюризатором применяют древесный уголь в смеси с углекислыми солями — карбонатами (ВаСО3, Na2CO3, К2СОз, СаСО3 и др.). Цементации подвергают заготовки из углеродистой или легированной стали с массовым содержанием углерода до 0,08 %. Для деталей, подверженных большим напряжениям, применяют стали, содержащие до 0,3 % С. Такое содержание углерода обеспечивает высокую вязкость сердцевины после цементации. Для цементации заготовки помещают в стальные цементационные ящики, засыпают карбюризатором, покрывают крышками, тщательно обмазывают щели глиной, помещают ящики в печь и выдерживают там 5—10 ч при температуре 930—950 °С. При нагревании в присутствии угля углекислый барий при температуре 900 °С распадается по реакции ВаСО3 + С → ВаО + 2СО. В результате образуется оксид углерода, который на поверхности стальных заготовок диссоциирует с выделением активного атомарного углерода; этот углерод адсорбируется и диффундирует в поверхностный слой заготовки, в результате повышается его массовое содержание в аустените, далее по достижении предела растворимости образуется цементит
3Fe + С → Fe3C. Поверхности, не подлежащие цементации, изолируют от карбюризатора нанесением на них обмазок или омедняют электролитическим способом. Глубина цементации обычно составляет 0,5—3 мм; цементированные заготовки содержат в поверхностном слое 0,95— 1,1 % С. При газовой цементации в качестве карбюризатора применяют различные газы и газовые смеси (природный, светильный, генераторный газы и др.). В их состав кроме оксида углерода входят углеводороды, из которых особое значение имеет метан СН4. Газовую цементацию выполняют в герметически закрытых безмуфельных или муфельных печах непрерывного действия при температуре 900— 950 °С и непрерывном потоке цементирующего газа или в шахтных печах периодического действия. В шахтных печах для цементации используют жидкие углеводороды (керосин, синтин), которые каплями подаются в печь и, испаряясь, образуют газы-карбюризаторы. Преимуществом газовой цементации перед цементацией твердым карбюризатором являются двух - трехкратное ускорение процесса, чистота рабочего места, возможность лучшего управления процессом. Газовая цементация применяется очень широко. Цементированные заготовки подвергают однократной или двойной закалке и низкому отпуску. Однократную закалку с нагревом до 820—850 °С применяют в большинстве случаев, особенно для наследственно-мелкозернистых сталей, когда продолжительная выдержка в горячей печи при цементации не сопровождается большим ростом зерен аустенита. Такая закалка обеспечивает частичную перекристаллизацию и измельчение зерна сердцевины заготовки, а также измельчение зерна и полную закалку цементированного слоя. Закалка после газовой цементации часто производится из цементационной печи после подструживания заготовок до 840— 860 °С. Двойную закалку применяют, когда нужно получить высокую ударную вязкость и твердость поверхностного слоя (например, для зубчатых колес). При этом производят: 1) закалку или нормализацию с нагревом до температуры 880—900 °С для исправления структуры сердцевины и ликвидации (растворения) цементитной сетки поверхностного слоя; 2) закалку с нагревом до температуры 760— 780 °С для измельчения структуры цементированного слоя и придания ему высокой твердости (до 60—64 HRC для углеродистой стали). Закаленные заготовки подвергают низкому отпуску (150— 170°С).
Углеродистая сталь имеет очень большую критическую скорость закалки, и сердцевина заготовок из такой стали независимо от скорости охлаждения имеет структуру перлит + феррит. Поэтому, чтобы получить детали с сердцевиной высокой прочности (сорбит + феррит), применяют легированную сталь, имеющую меньшую критическую скорость закалки (например, сталь марок 20Х, 18ХГТ, 25ХГМ и др.). 10.2. Азотирование. Цель азотирования — придание поверхностному слою деталей высокой твердости, износостойкости и коррозионной стойкости. Азотирование осуществляется при выделении активного азота из диссоциирующего аммиака 2NH3 → 2N + ЗН2. Азотируют легированную сталь, содержащую алюминий, титан, вольфрам, ванадий, молибден или хром (например, сталь марок 35ХМЮА, 35ХЮА и др.). Перед азотированием заготовки подвергают закалке и высокому отпуску. Азотирование производят в печах при температуре 500— 600 °С. Активный азот, выделяющийся при диссоциации аммиака, диффундирует в поверхностный слой и вместе с перечисленными легирующими элементами и железом образует очень твердые химические соединения — нитриды (AlN, MoN, Fe3N и др.). Азотирование на глубину 0,2—0,5 мм продолжается 25—60 ч и в этом его основной недостаток. Однако азотирование имеет ряд преимуществ перед цементацией: температура нагрева сравнительно низкая, а твердость более высокая (1100—1200 по Виккерсу, вместо 800—900 после цементации и закалки); у азотированных изделий большие коррозионная стойкость, сопротивление усталости и меньшая хрупкость. Поэтому азотирование широко применяют для деталей из стали и чугуна (шестерен, коленчатых валов, цилиндров двигателей внутреннего сгорания и т. д.). Азотирование приводит к некоторому увеличению размеров заготовок, поэтому после азотирования их подвергают шлифованию. 10.3. Цианирование. Цианирование — насыщение поверхностного слоя одновременно углеродом и азотом; оно бывает жидкостным и газовым. Жидкостное цианирование производится в ваннах с расплавами цианистых солей [NaCH, KCH, Са(СN)2 и др.] при температуре, достаточной для разложения их с выделением активных атомов С и N. Низкотемпературное (550—600 °С ) цианирование применяют, главным образом, для инструментов из быстрорежущей стали с целью повышения их стойкости и производится в расплавах чистых цианистых солей. Высокотемпературное (800—850 °С) цианирование осуществляется в ваннах, содержащих 20—40 %-ные расплавы цианистых солей с нейтральными солями (NaCl, Na2CO3 и др.) для повышения температуры плавления ванны. Продолжительность жидкостного цианирования от 5 мин до 1 ч. Глубина цианирования 0,2—0,5 мм. После цианирования заготовки подвергают закалке и низкому отпуску. Цианирование, как и цементацию, применяют для различных изделий, при этом коробление заготовок значительно меньше, чем при цементации, а износо - и коррозионная стойкость более высокие. Недостатком жидкостного цианирования является ядовитость цианистых солей, а также их высокая стоимость.
Газовое цианирование отличается от газовой цементации тем, что к цементирующему газу добавляют аммиак, дающий активизированные атомы азота. Газовое цианирование, так же как и жидкостное, разделяется на низкотемпературное и высокотемпературное. При низкотемпературном (500—700 °С) газовом цианировании в сталь преимущественно диффундирует азот (с образованием нитридов), а углерод диффундирует в малых количествах. Это цианирование, так же как и жидкостное низкотемпературное, применяют для обработки инструментов из быстрорежущей стали. При высокотемпературном газовом цианировании (800—850 ° С) в сталь диффундирует значительное количество углерода с образованием аустенита. После высокотемпературного цианирования заготовки закаливают. При газовом цианировании, называемом также нитроцементацией, отпадает необходимость в применении ядовитых солей и, кроме того, имеется возможность обработки более крупных деталей. 10.4. Диффузионная металлизация. Наиболее распространенными видами диффузионной металлизации являются алитирование, хромирование, силицирование. Алитирование представляет собой поверхностное насыщение стальных и чугунных заготовок алюминием с образованием твердого раствора алюминия в железе. Его применяют преимущественно для деталей, работающих при высоких температурах (колосников, дымогарных труб и др.), так как при этом значительно (до 1000 °С) повышается жаростойкость стали. Для алитирования алюминий сначала наносят на заготовку распылением жидкой струи сжатым воздухом, затем нанесенный слой алюминия защищают жаростойкой обмазкой и производят диффузионный отжиг заготовок при температуре 920°С в течение 3 ч. В процессе отжига поверхностный слой заготовки насыщается алюминием на глубину в среднем 0,5 мм. Диффузионное хромирование производится в порошковых смесях, составленных из феррохрома и шамота, смоченных соляной кислотой, или в газовой среде при разложении паров хлорида хрома СrCl. Хромированию подвергаются в основном стали с массовым содержанием углерода не более 0,2%. Хромированный слой низкоуглеродистой стали незначительно повышает твердость, но обладает большой вязкостью, что позволяет подвергать хромированные детали сплющиванию, прокатке и т. п. Хромированные детали имеют высокую коррозионную стойкость в некоторых агрессивных средах (азотной кислоте, морской воде). Это позволяет заменять ими детали из дефицитной высокохромовой стали. Силицирование — насыщение поверхностного слоя стальных заготовок кремнием, обеспечивающее повышение стойкости против коррозии и эрозии в морской воде, азотной, серной и соляной кислотах, применяется для деталей, используемых в химической промышленности.
Силицированный слой представляет собой твердый раствор кремния в α-железе. Существует силицирование в порошкообразных смесях ферросилиция, а также газовое силицирование в среде хлорида кремния SiCl4.
Резюме Х имико-термическая обработка — нагрев сплава в соответствующих химических реагентах для изменения состава и структуры поверхностных слоев. Наиболее распространенными видами химико-термической обработки стали являются цементация, азотирование, цианирование. Цементация. Цементацией называется поглощение углерода поверхностным слоем заготовки, который после закалки становится твердым; в сердцевине заготовка остается вязкой. Цементации подвергают такие изделия, которые работают одновременно на истирание и удар. Существуют два вида цементации: цементация твердым карбюризатором и газовая цементация. Азотирование. Цель азотирования — придание поверхностному слою деталей высокой твердости, износостойкости и коррозионной стойкости. Азотирование осуществляется при выделении активного азота из диссоциирующего аммиака. Цианирование. Цианирование — насыщение поверхностного слоя одновременно углеродом и азотом; оно бывает жидкостным и газовым. Диффузионная металлизация. Наиболее распространенными видами диффузионной металлизации являются алитирование, хромирование, силицирование. Алитирование представляет собой поверхностное насыщение стальных и чугунных заготовок алюминием с образованием твердого раствора алюминия в железе. Диффузионное хромирование производится в порошковых смесях, составленных из феррохрома и шамота, смоченных соляной кислотой, или в газовой среде при разложении паров хлорида хрома СrCl. Силицирование — насыщение поверхностного слоя стальных заготовок кремнием, обеспечивающее повышение стойкости против коррозии и эрозии в морской воде, азотной, серной и соляной кислотах. Вопросы для повторения 1. Что такое химико-термическая обработка и когда целесообразно ее проведение? 2. Перечислите виды ХТО. 3. Как и для чего приводится цементация, азотирование, цианирование, диффузионная металлизации?
Термомеханическая обработка Как было отмечено, термомеханическая (термопластическая) обработка заключается в совмещении двух способов упрочнения — пластической деформации и фазовых изменений. Применительно к стали термомеханическая обработка (ТМО) заключается в наклепе аустенита с последующим его превращением.
Рис. 58. Классификационная схема ТМО
Наиболее распространенными видами ТМО являются (рис. 58): высокотемпературная термомеханическая обработка (ВТМО), которая состоит из деформирования аустенита выше температуры рекристаллизации (tp, рис. 58) обычно выше критических точек и быстрого охлаждения;
низкотемпературная термомеханическая обработка (НТМО), которая состоит из деформирования аустенита ниже tp, т. е. нестабильного аустенита переохлажденного ниже критических точек с последующим охлаждением и фазовым превращением. Имеется еще много других вариантов ТМО, различающихся условиями нагрева или охлаждения, характером деформации и другими деталями, описывать которые здесь не представляется возможным. Объединяет все варианты ТМО то, что аустенит в результате пластической деформации претерпевает изменения, которые в какой-то степени (может быть даже полностью) передаются мартенситу. В результате сталь упрочняется, как за счет мартенситной реакции, но и дополнительное упрочнение вносят дефекты строения, унаследованные мартенситом от деформированного аустенита.
Резюме Термомеханическая (термопластическая) обработка заключается в совмещении двух способов упрочнения — пластической деформации и фазовых изменений. Термомеханическая обработка (ТМО) заключается в наклепе аустенита с последующим его превращением. Виды ТМО: высокотемпературная термомеханическая обработка (ВТМО)- деформирование аустенита выше температуры рекристаллизации tp (обычно выше критических точек) и быстрое охлаждение; низкотемпературная термомеханическая обработка (НТМО) - деформирование аустенита ниже tp (ниже критических точек) с последующим охлаждением и фазовым превращением. Вопросы для повторения 1. Что такое термомеханическая обработка, 2. Какие виды ТМО известны? 3. В чем отличие видов ТМО?
Цветные металлы и сплавы 12.1. Медь и ее сплавы Медь используется человеком с давних времен и отмечена в истории культуры бронзовым веком. Наиболее важное свойство меди, обеспечившее ей широкое применение, — хорошие электропроводимость и теплопроводность, высокая пластичность и способность образовывать технологичные сплавы, которые отлично обрабатываются и обладают хорошими механическими свойствами. Температура плавления меди 1083 °С, кипения 2360 °С. Предел прочности чистой меди не очень высок и составляет 220 МПа. Ее кристаллическая решетка—кубическая гранецентрированная с параметрами а = 0,361 нм. Плотность меди 8,93 г/см3, твердость почти в 2 раза меньше, чем у железа.
Рис. 59. Диаграмма состояния медь—цинк
Наиболее распространенными и известными сплавами меди являются латуни и бронзы. Латунями называют группу сплавов меди с цинком. В группу латуней входят томпак (90 % Сu и более, остальное — цинк) и много других, не только двойных, но и более сложных сплавов. Механическая прочность латуней выше, чем меди; они хорошо обрабатываются резанием. Латуни широко используют в приборостроении, общем и химическом машиностроении. Наибольшее применение нашли латуни, содержащие до 38 % Zn, так как до этого предела (согласно диаграмме состояния) существует твердый раствор замещения меди цинком и, следовательно, сохраняется кристаллическая решетка куба с центрированными гранями (рис. 59). Эти латуни пластичны, хорошо обрабатываются давлением в горячем состоянии, коррозионностойки. Вследствие близкого расположения линий ликвидуса и солидуса в системе медь — цинк латуни имеют хорошие литейные свойства (большую жидкотекучесть, отсутствие ликвации, малую усадку и др.). Но при их заливке в формы необходима хорошая вентиляция цеха, так как пары, выделяющиеся из жидких латуней, вредно влияют на организм человека. Медно-цинковые латуни выпускают восьми марок и обозначают русской буквой Л; следующая за буквой цифра указывает средний процент меди в этом сплаве. Марка с максимальным содержанием меди Л96, с минимальным — Л60. Латуни более сложного состава в обозначении имеют после буквы Л другую букву, а цифры, размещенные после цифры, показывающей процент меди, указывают процент добавок в марке латуни. Например, ЛС59-1 означает латунь свинцовая, содержащая 57— 60 % Сu и 0,8—1,5 Pb; ЛМцА-57-3-1 — латунь марганцово-алюминиевая, содержащая 55,0—58,5%Сu, 2,5—3,5 % Мn и 0,5—1,5 % А1. Все добавляемые к латуни элементы обозначают русскими буквами: О — олово, Ц — цинк, С — свинец, Ж — железо, Мц — марганец, Н — никель, К — кремний, А — алюминий и т.д. Добавки этих металлов к латуням необходимы для улучшения их механических свойств или обрабатываемости, а также повышения коррозионной стойкости. Микроструктура латуни приведена на рис. 60. Рис.60. Микроструктура латуни, х200: а - α-латунь, б - α+β-латунь Широко известны сплавы меди с оловом, называемые бронзами (рис.61). Из бронзы еще в древности делали оружие и инструменты, сосуды и украшения, так как эти сплавы более прочны и коррозионностойки, чем медь. Благодаря отличным литейным качествам из этих сплавов в более позднее время стали отливать пушки и колокола. Малый коэффициент трения и устойчивость к износу делает их незаменимыми при изготовлении вкладышей подшипников, червяков и червячных колес, шестерен и других деталей ответственных и точных приборов. Рис.61. Структура литой бронзы с 6% Sn, х200: а) после отжига, б) до отжига Бронзы маркируют русскими буквами Бр; справа ставят элементы, входящие в бронзу: О — олово, А — алюминий, Ф — фосфор, Т — титан и другие, обозначаемые так же, как и в латунях, но цифры, стоящие за буквами, обозначают среднее содержание добавок этих дополнительных элементов в бронзе (цифры, обозначающие процентное содержание меди в бронзах, не ставят). Например, БрОЦ4-3 означает, что в бронзе содержится в среднем 4 % Sn, 3 % Zn, остальное медь. Сплавы, содержащие небольшое количество олова, образуют твердый раствор замещения меди оловом, имеющим кристаллическую решетку куба с центрированными гранями, т. е. решетку, аналогичную решетке чистой меди. Большинство современных бронз редко содержат больше 7 % Sn и обычно имеют однофазную структуру, состоящую из твердого раствора олова в меди. Олово дороже и дефицитнее меди. Поэтому широкое применение нашли заменители — в первую очередь алюминиевые бронзы как простые БрА5, так и более сложные БрАЖМцЮ-3-1,5. Сплавы меди с небольшими добавками алюминия (до 10 %) характеризуются хорошей жидкотекучестью, малой ликвацией, хорошо деформируются в горячем и холодном состоянии, так как эти сплавы образуют однофазный твердый раствор алюминия в меди. Добавки никеля, железа, марганца и свинца улучшают механические и некоторые технологические свойства алюминиевых бронз. Высокими механическими свойствами, пластичностью и коррозионной стойкостью отличаются кремниевые бронзы, например БрКН-1-3, содержащая 0,6—1,1 % Si; 2,4—3,4 % Ni и 0,1—0,4 % Мn. Антифрикционными свойствами обладают бронзы БрОЦС4-4-4, содержащие по 3—5 % олова и цинка, и 3,5—4,5 % свинца. Очень большой прочностью и упругостью славятся бериллиевые бронзы БрБ2, в состав которых входят 1,8—2,1 % Be, 0,2—0,5 % Ni (остальное медь) и др. Из них изготовляют пружины, пружинящие контакты ответственных приборов и пр. 12.2. Алюминий и его сплавы Алюминий — второй (после железа) металл современной техники. Наиболее важное свойство алюминия, определяющее его широкое применение, — это его плотность, равная 2,7 г/см3 (т. е. алюминий почти в 3 раза легче железа), а также хорошая электрическая проводимость, составляющая 65% электрической проводимости меди. Кроме того, алюминий имеет высокую теплопроводность и теплоемкость, химически стоек против органических кислот и хорошо сопротивляется воздействию азотной кислоты. Он очень быстро окисляется на воздухе, покрываясь тонкой пленкой оксида, которая, в отличие от оксида железа, не пропускает кислород в толщу металла, делая его стойким против коррозии. Его кристаллическая решетка — куб с центрированными гранями с параметром а = 0,404 нм. Никаких аллотропических превращений у алюминия не обнаружено. Температура плавления алюминия 660°С, температура кипения ~2500°С. Механические свойства алюминия невысоки. Предел прочности при разрыве составляет 90—180 МПа, НВ 20—40; он имеет высокую пластичность, что дает возможность прокатывать его в очень тонкие листы. Однако чистый алюминий трудно обрабатывается резанием, а также имеет значительную линейную усадку (1,8 %). Для устранения этих отрицательных свойств в алюминий вводят различные добавки, поэтому широко распространены сплавы алюминия. Сплавы алюминия принято делить на две группы: первая — сплавы, деформируемые обработкой, и вторая — литейные сплавы. Деформируемые обработкой алюминиевые сплавы характеризуются невысокой прочностью, но хорошей пластичностью (от 6 до 40 %). К ним относятся сплавы алюминия с марганцем и магнием, содержащие до 6 % Mg. Из этих сплавов широко применяют сплав АМц, содержащий 1—1,6 % Мn, и сплавы АМг2, АМг5, содержащие соответственно 2,6—1,8 Mg, 0,2—0,6 Мn и 4,8—5,8 Mg, 0,3—0,8 Мn. Эти сплавы почти все однофазные, имеющие структуру твердого раствора. Они хорошо свариваются, устойчивы против коррозии и применяются для малонагруженных деталей, изготовляемых холодной штамповкой, и для сварных конструкций. Упрочнение этих сплавов возможно только путем холодной деформации, так как их упрочнение термической обработкой не удается. Из группы деформируемых алюминиевых сплавов, упрочняемых термической обработкой, наиболее известны дуралюмины и авиаль. Эти современные сплавы имеют в своем составе по три-четыре, а чаще и больше составляющих. Их способность упрочняться термической обработкой хорошо иллюстрируется двойной диаграммой Аl— Сu (рис. 62); почти во всех сплавах этой группы обычно присутствует медь, образующая с алюминием твердый раствор с предельной растворимостью 5,6 % при температуре 548 °С. С понижением температуры растворимость меди в алюминии быстро уменьшается.
Рис.62. Диаграмма состояния сплавов алюминия с медью
Дуралюмины — сплавы на основе Al—Cu—Mg, в которые дополнительно вводят марганец для повышения коррозионной стойкости сплава. Наиболее известны сплавы Д18, содержащий 2,2— 3 % Сu, 0,2 — 0,5 о/о Mg, и Д16, содержащий 3,8 — 4,6 % Сu, 1,2— 1,8 % Mg и 0,3 — 0,9 % Мn. Микроструктура дуралюмина показана на рис.63. Рис.63. Микроструктура дуралюминия: а - отожженное состояние, х200; б - закаленное состояние, х100
Дуралюмины хорошо деформируются и в горячем, и в холодном состояниях: для их упрочнения обычно применяют закалку в воде и естественное старение. Наибольшее упрочнение достигается в течение первых суток после закалки и практически заканчивается в течение пяти суток. Наиболее прочные алюминиевые сплавы — сплавы типа В95, содержащие 6 % Zn, 2,3 % Mg, 1,7 % Сu, 0,4 % Mn, 0,2 %Cr. Но, применяя их, следует иметь в виду, что эти сплавы еще менее коррозионностойки, чем дуралюмины, и не пригодны для работы при температурах выше 150 °С, так как их прочностные характеристики сильно понижаются при повышенной температуре. Известно много других сложных деформируемых сплавов для ковки, штамповки и работы при повышенных температурах: АК4, АК6, АК8, АК4-1. Литейных алюминиевых сплавов очень много: их принято маркировать двумя буквами: АЛ (алюминиевый сплав, литейный). В соответствии с ГОCТ их принято делить на пять групп. Группа I — сплавы на основе системы алюминий — кремний (АЛ2, АЛ4, АЛО). Эти сплавы часто называют силуминами, и они представляют интерес с точки зрения металловедения. Группа II объединяет много сплавов, имеющих основу алюминий—кремний—медь (АЛЗ, АЛ5, АЛ6, а также АЛ32, содержащий, кроме трех основных компонентов, еще марганец и титан). Группа III — сплавы на основе системы алюминий — медь (АЛ7 и АЛ 19), которые из-за наличия значительного количества меди более дефицитны и дороги. Группа IV — сплавы на основе системы алюминий — магний (АЛ8, АЛ 13, АЛ22 и др.), обладающие низкой плотностью (почти в 3 раза легче стали), высокими механическими свойствами и коррозионной стойкостью. Двойные сплавы начали широко использовать для получения легких отливок различного оборудования для транспортных машин. К группе V относят сплавы на основе алюминия и других компонентов. Эта группа особенно велика: наиболее популярны из этой группы сплавов АЛ1, содержащий медь, никель и магний, сплав АЛ11, включающий кроме алюминия и кремния большое количество цинка (7— 12 %) и немного магния. В эту группу входит также сплав АЛ24, содержащий магний, марганец, цинк, титан и др. Литейные сплавы алюминия с магнием, медью, а также многие другие более сложные сплавы на основе алюминия подвергают термической обработке, так как их основные прочностные и технологические свойства изменяются при этом в очень широких пределах. Многие алюминиевые сплавы с добавками меди и магния подвержены старению, т. е. изменяют свои свойства при хранении. Например, у сплава АЛ8, содержащего 9,5 — 11 % Mg, в литом состоянии относительное удлинение δ = 10 %; если этот сплав нагреть под закалку и медленно охладить с печью, то δ = 2 %, а после пяти суток выдержки при 20 °С δ увеличится до 20 %. Наибольшей известностью пользуются силумины и сплавы алюминия с медью. Микроструктура силумина показана на рис.64. Типичный силумин — сплав АЛ2 содержит 10—13 % Si, обладает высокой жидкотекучестью, малой усадкой. Кроме того, он устойчив против коррозии и относительно легкоплавок. Удовлетворительные механические свойства и структуру силумин приобретает только после модифицирования. Немодифицированный силумин имеет грубую игольчатую структуру и очень хрупок; после модифицирования эвтектика становится мелкозернистой, в результате чего сплав приобретает пластичность. Модифицирование проводят добавкой в жидкий сплав незначительного количества металлического натрия. Рис.64. Микроструктура литейных сплавов алюминия, х200: а - немодифицированный силумин, б - модифицированный силумин
Однако эффект такого модифицирования сохраняется в жидком сплаве только 10—15 мин, и поэтому модифицирование необходимо непосредственно перед разливкой сплава. Более удобно модифицировать силумин смесью солей 2/з NaF и 1/з NaCI, которая, будучи загружена в заливочный ковш, сохраняет эффект модифицирования около 1 ч. Титан и его сплавы Титан — металл серебристого цвета с голубоватым отливом; имеет невысокую плотность 4,507 г/см3, плавится при температуре 1660 °С, кипит при 3260 °С. Титан имеет две аллотропические модификации: до 882 °С существует α-титан, имеющий гексагональную решетку с параметрами а0 = 0,295 нм и с0 = 0,468 нм, и при более высоких температурах — (β-титан с кубической объемно центрированной решеткой с параметром и а = 0,304 нм. Механические свойства титана изменяются от содержания в нем примесей. Чистый титан ковок, имеет невысокую твердость (НВ 70); технический титан хрупок и тверд (НВ 180—280). Вредные примеси титана — азот и кислород резко снижают его пластичность, а углерод при содержании более 6,15 % снижает ковкость, затрудняет обработку титана резанием и резко ухудшает свариваемость. Водород в большой степени повышает чувствительность титана к надрезу, поэтому этот эффект называют водородной хрупкостью. На поверхности титана образуется стойкая оксидная пленка, вследствие чего титан обладает высокой сопротивляемостью коррозии в некоторых кислотах, морской и пресной воде. На воздухе титан устойчив и мало изменяет свои механические свойства при нагреве до 400 °С. При более высоком нагреве он начинает поглощать кислород, ухудшаются его механические свойства, а выше 540 °С — становится хрупким. При нагреве выше 800 °С титан энергично поглощает кислород, азот и водород, что используется в металлургии при производстве легированной стали. Титан образует ряд оксидов. Из них наиболее изучены ТiO2, ТiО3. Двуокись титана TiO2 — амфотерный порошок белого цвета, практически не растворимый в воде и разбавленных кислотах. Двуокись титана является основным продуктом переработки титанового сырья. Технический титан, применяемый промышленностью, делят на две марки: ВТ 1-00 и ВТ 1-0; в них допускается следующее содержание примесей, %: 0,05—0,07С; 0,1 — 0,12 О2; до 0,04 N2; 0,08—0,01 H2; до 0,2 Fe; 0,008 — 0,1 Si. Однако механические свойства ВТ 1-0 несколько выше за счет увеличения суммы перечисленных примесей в нем. Для повышения механических свойств титана его почти всегда легируют алюминием, который повышает температуру аллотропического превращения титана α↔β, поэтому алюминий часто называют α-стабилизатором титана. Наоборот, элементы, понижающие эту температуру, называют β-стабилизаторами. К ним относятся: молибден, ванадий, хром, марганец, железо и некоторые другие металлы. В промышленности применяют титановые сплавы либо со структурой α - твердого раствора, либо смешанной структурой (α+β)-твердого раствора. Микроструктура титанового сплава показана на рис.65. Алюминий, образуя с титаном твердый раствор, замещая и стабилизируя α-фазу, увеличивает прочность титана, жаропрочность и сопротивляемость окислению при высоких температурах, хотя и понижает пластичность. Поэтому алюминий является наиболее важной составляющей титановых сплавов и всегда входит в их состав (сплав ВТ5 и др.). Рис.65. Микроструктура титановых сплавов, х400: а - твердый раствор α (сплав ВТ1); б - фаза α` (мартенсит, полученный после закалки сплавов ВТ1 с 1075o С).
Для получения сплавов смешанной структуры титан, кроме алюминия, легируют дополнительно хромом, марганцем, молибденом, а иногда и другими β-стабилизаторами. Сплавы смешанной структуры (α+β) обладают почти удвоенной прочностью по сравнению с чистым титаном. Однако эта повышенная прочность сохраняется до температуры 430°С. Большинство этих сплавов обладает хорошей пластичностью даже при низких температурах, и поэтому легче куются, штампуются и прокатываются, чем однофазные титановые сплавы. Сварка этих сплавов затруднена, так как они при сварке теряют пластичность, а швы приобретают хрупкость. Наиболее технологичным, дешевым и поэтому широко распространенным в этой группе является сплав ВТЗ-1 (5,5—7 % Аl; 0,8—2,3 % Cr; 2—3 % Мо; 0,2—0,4 % Si). Он обладает термической стабильностью, не становится хрупким при длительном нагреве (до 10 000 ч) до температуры 400°С, а при кратковременной работе — до 450 °С; σв = 900—1150 МПа; δ = 10— 16 %. Сплав ВТ9 (6—7 % Al; 3 — 4 % Мо; 0,3 % Si; 0,8 — 2 % Zr) можно применять при изготовлении конструкций и деталей, длительно работающих при нагреве до температуры 450 °С, σв = 980—1150 МПа, δ = 8—16 %. Эти сплавы штампуются и куются, из них прокатываются и прессуются прутки и фасонные профили. Сплавы, содержащие в основном алюминий и поэтому обладающие α-структурой (например, сплав ВТ5, содержащий 4,3—6,2 % Al), хорошо свариваются, устойчивы против коррозии в атмосферной среде, загрязненной газами до температуры 1090 °С, сохраняют высокую прочность при нагреве до 650 °С. Однако их пластичность ниже пластичности двухфазных сплавов, имеющих α- и β-фазу. Все деформируемые сплавы титана можно применять и для фасонного литья, но делают это редко, так как титан легко взаимодействует с газами и формовочными материалами. Сплавы титана со структурой, имеющей одну β-фазу, в промышленности почти не применяют, хотя они обладают отличной пластичностью. Причиной служит их чувствительность к загрязнению атмосферными газами при нагреве, неизбежному в процессе производства.
12.4. Антифрикционные сплавы Наряду с подшипниками качения в машинах широко используются подшипники скольжения. Поскольку вкладыши подшипников скольжения непосредственно соприкасаются с валами, их изготовляют из сплавов достаточно пластичных, чтобы было легко прирабатываться к поверхности вращающегося вала, и достаточно прочных, чтобы служили опорой для вала; кроме того, сплавы должны иметь малый коэффициент трения с материалом вала и достаточно низкую температуру плавления, что необходимо для заливки подшипников. Сплавы, удовлетворяющие перечисленным требованиям, называются подшипниковыми или антифрикционными. Антифрикционные сплавы имеют пластичную основу, в которой равномерно рассеяны более твердые частицы. При вращении в подшипнике вал опирается на эти твердые частицы, а мягкая основа сплава по поверхности соприкосновения с валом изнашивается, в результате чего образуется сеть микроканалов, по которым перемещается смазка. Подшипниковые материалы делят на следующие группы: белые антифрикционные сплавы на основе олова, свинца (баббиты) и алюминия; сплавы на основе меди, чугуны серые, модифицированные и ковкие; металлокерамические пористые материалы; пластмассы. Баббиты. В оловянном баббите марки Б83 пластичной основой является твердый раствор сурьмы и меди в олове, а твердыми частицами — соединения SnSb и Cu3Sn. Микроструктура баббита Б83 приведена на рис. 66. Рис.66. Микроструктура баббита: а - Б83, б - Б16
Баббиты Б83 применяют для заливки подшипников особо нагруженных машин. Оловянные баббиты дороги, поэтому по возможности их заменяют баббитами, состоящими преимущественно из свинца (например, баббитом марки Б16). В свинцовых баббитах с сурьмой (марки Б16) твердые частицы образуют кристаллы соединений SnSb и Cu3Sn, рассеянные в мягкой основе — растворе сурьмы и олова в свинце. Эти баббиты уступают по качеству оловянным, однако с успехом применяются для подшипников средней нагруженности (например, в тракторных и автомобильных двигателях).
Резюме Медь. Свойства - хорошие электропроводимость и теплопроводность, высокая пластичность и способность образовывать технологичные сплавы Температура плавления меди 1083 °С, кристаллическая решетка — ГЦК. Предел прочности чистой ме
|
|||||||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 357; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.134.161 (0.018 с.) |