Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Детерминанты наследственностиСодержание книги
Поиск на нашем сайте
Длительное время считали, что ДНК содержится только в ядрах клеток, и вся наследственность понималась в качестве ядерной. Между тем с развитием молекулярно-генетических методов исследований стали обнаруживать ДНК, находящуюся за пределами ядра как у прокариотов, так и в клетках эукариотов. Эта ДНК получила название экстраядерной (экстрахромосомной) ДНК, а контролируемую такой ДНК последовательность — экстраядерной или экстрахромосомной. Перечислим формы экстраядерных (экстрахромосомных) ДНК прокариотов и эукариотов: 1. ДНК плазмид: бактерии, низшие грибы и другие организмы. 2. ДНК органелл: митохондрии, хлоропласты, кинетопласты. 3. ДНК амплифицированных генов: гены, контролирующие синтез отдельных белков. 4. Малые полидисперсные кольцевые и линейные ДНК: экстрахромосомные копии повторяющихся (часто транспозируемых) последовательностей ДНК. Плазмиды. Плазмиды встречаются в цитоплазме как прокариотов, так и эукариотов, причем у бактерий они являются обычными обитателями. В частности, они идентифицированы почти у всех видов бактерий, имеющих медицинское (являющихся возбудителями болезней) или сельскохозяйственное и промышленное значение. Плазмиды бактерий — это генетические структуры, находящиеся в цитоплазме и представляющие собой молекулы ДНК размером от 2250 до 400 000 пар азотистых оснований. Они существуют обособленно от хромосом в количестве от одной до нескольких десятков копий на одну бактериальную клетку. Различают три типа бактериальных плазмид: факторы генетического переноса, коин-тегративные и неконъюгативные плазмиды (рис. 108). Факторы переноса обладают лишь генами репликации и переноса. Благодаря генам репликации такие плазмиды способны к бесконечно долгому поддержанию и воспроизводству в автономном (экстрахромосомном) состоянии, а благодаря генам переноса — к передаче от одних клеток к другим, часто преодолевая в скрещиваниях видовые и родовые барьеры. Бактерии, содержащие плазмиды этого типа, служат генетическими донорами. Они способны вступать в скрещивания с клетками, не содержащими плазмиды. Коинтегративные плазмиды представляют собой фактор генетического переноса, сцепленный с генами, контролирующими синтез тех или иных белков, имеющих значение для бактерий. Например, плазмиды R контролируют синтез ферментов, придающих бактериям устойчивость к антибиотикам, сульфани-ламидам и другим лекарственным веществам, плазмиды Ent — синтез энтеротоксинов, Col — колицинов, Hly — гемолизинов. Известны также плазмиды, контролирующие разрушение многих органических соединений и др. свойства. Благодаря фактору переноса эти плазмиды конъюгативны. Неконъюгативные плазмиды — это плазмиды, которые не передаются от одних клеток к другим, т. к. они не обладают фактором переноса. Они тоже детерминируют лекарственную устойчивость и другие свойства бактерий. Передача неконъюгативных плазмид от одних бактерий к другим обеспечивается содержащимися в клетках факторами переноса или коинтегративными плазмидами, которые мобилизуют их на перенос. Среди эукариотов плазмиды идентифицированы у низших грибов. Одна из таких плазмид у дрожжей S. cerevisiae представляет собой кольцевые молекулы ДНК размером в 6318 пар оснований, существующие в количестве 80 копий на гаплоидный геном и кодирующие белки, необходимые для собственной репликации и рекомбинации. У нейроспоры (Neurospora) плазмиды обнаружены в виде малых кольцевых молекул ДНК размером 4200-5200 пар оснований, встречающихся в количестве около 100 копий на гаплоидный геном, а у плесени Aspergilus niger — в виде кольцевых молекул ДНК размером около 13 500 пар оснований в количестве около 100 копий на клетку. ДНК органелл. ДНК этого класса обнаружена в случае как низших, так и высших эукариотов. Молекулы ДНК, выделяемые из митохондрий соматических клеток животных и хлоропластов клеток растений, характеризуются небольшими размерами. Например, размеры молекул ДНК (гено-мов) митохондрий (мтДНК) разных животных (включая плоских червей, насекомых и млекопитающих), составляют 15 700—20 000, человека — 16 569 пар азотистых оснований. У простейших, например у трипаносом и парамеций, митохондриальный геном равен 22 000 и 40 000 пар оснований. Геном хлоропластов у высших растений составляет 12 000 — 200 000 пар оснований, у дрожжей — 78 000 пар оснований, у зеленых водорослей — 180 000 азотистых оснований. Во многих случаях показано, что ДНК митохондрий и хлоропластов сплошь состоит из нуклеотидных последовательностей, гомологичных последовательностям хромосомной ДНК. Митохондриальный геном человека состоит из 13 генов, нукле-отидная последовательность которых определена и для которой характерно полное или почти полное отсутствие некодирующих участков. Эти гены кодируют собственные рибосомные РНК (12S- и 168-рРНК.) и 22 разные транспортные РНК, а также разные поли-пептиды, включая субъединичные компоненты I, II, III оксидазы цитохрома С, субъединицы 6 АТФазы, цитохрома В и девяти других белков, функции которых не известны. Геном хлоропластов ряда высших растений состоит из 120 генов. Они кодируют 4 рибосомных РНК, 30 рибосомных белков, часть субъединиц хлоропластной РНК-полимеразы, часть белков, содержащихся в фотосистемах I и II, белковые субъединицы АТФ-синтетазы и отдельных ферментов цепи транспорта электронов, а также белковую субъединицу рибулозобисфосфаткарбоксидазы и очень многих тРНК. Хлоропластный геном очень сходен с бактериальным геномом как по организации, так и по функциям. В митохондриальном геноме человека, вероятно, отсутствуют интроны, но в ДНК хлоропластов некоторых высших растений, а также в ДНК митохондрий грибов интроны обнаружены. Считают, что хлоропластные геномы высших растений остаются без изменений примерно несколько миллионов лет. Возможно, что такая древность характерна и для митохондриальных геномов млекопитающих, включая человека. Характер передачи мтДНК по наследству у разных организмов различен. Например, у дрожжей в результате одинакового вклада мтДНК сливающимися гаплоидными клетками в зиготу митохондриальный геном наследуется потомством от обоих родителей. Между тем показано, что у D. melanogaster и мышей мтДНК передается по материнской линии. По данным посемейного распределения ДНК в больших семьях предполагают, что мтДНК у человека также наследуется по материнской линии. Однако у морских голубых двустворчатых раковин из рода Mytilus она передается как по материнской, так и по мужской линии, причем тип передачи зависит от пола потомства. Женские митохондрий передаются матерями сыновьям и дочерям, тогда как мужские митохондрий передаются отцами сыновьям. Но у этих животных иногда встречается и передача женских митохондрий от отцов к дочерям. У большинства высших растений ДНК хлоропластов тоже наследуется по материнской линии. ДНК, обнаруживаемая в кинетопластах трипаносом, представлена малыми (2,500 п. о.) и крупными (3700 п. о.) кольцевыми молекулами. ДНК амплифицированных генов. Эта ДНК встречается в форме экстрахромосомных кольцевых молекул. Например, когда эука-риотические клетки культивируют в средах с лекарственными веществами, то происходит селекция резистентных клеток с повышенным количеством копий гена, контролирующего резистен-тность. Клетки многих опухолей содержат также экстрахромосомные амплифицированные гены (наряду с хромосомными). Малые полидисперсные кольцевые и линейные ДНК. Молекулы ДНК этого типа (мпкДНК) имеют размеры от нескольких сот до десятков тысяч нуклеотидных пар и встречаются как в цитозоле, так и в ядре и митохондриях клеток многих организмов-эукариотов. Эти молекулы ДНК происходят или связаны с ДНК хромосом и органелл. Многие из этих молекул ДНК способны к транспозиции (см. § 45).
|
||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 243; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.204.195 (0.011 с.) |