Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Разработка естественноязыковых интерфейсов и машинный переводСодержание книги
Поиск на нашем сайте
В 50-х гг. одной из популярных тем исследований искусственного интеллекта являлась область машинного перевода. Первая программа в этой области – переводчик с английского языка на русский. Первая идея – пословный перевод, оказалась неплодотворной. В настоящее время используется более сложная модель, включающая анализ и синтез естественноязыковых сообщений, которая состоит из нескольких блоков. Для анализа это: морфологический анализ – анализ слов в тексте; синтаксический анализ – анализ предложений, грамматики и связей между словами; семантический анализ – анализ смысла каждого предложения на основе некоторой предметно-ориентированной базы знаний; прагматический анализ – анализ смысла предложений в окружающем контексте на основе собственной базы знаний. Синтез включает аналогичные этапы, но несколько в другом порядке. Распознавание образов
Традиционное направление искусственного интеллекта, берущее начало у самых его истоков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Это направление близко к машинному обучению, тесно связано с нейрокибернетикой. Новые архитектуры компьютеров
Это направление занимается разработкой новых аппаратных решений и архитектур, направленных на обработку символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных и параллельным компьютерам. Интеллектуальные роботы Роботы – это электромеханические устройства, предназначенные для автоматизации человеческого труда. Идея создания роботов исключительно древняя. Само слово появилось в 20-х гг. Его автор – чешский писатель Карел Чапек. Со времени создания сменилось несколько поколений роботов. Роботы с жесткой схемой управления. Практически все современные промышленные роботы принадлежат к первому поколению. Фактически это программируемые манипуляторы. Адаптивные роботы с сенсорными устройствами. Есть образцы таких роботов, но в промышленности они пока не используются. Самоорганизующиеся, или интеллектуальные, роботы. Это конечная цель развития робототехники. Основная проблема при создании интеллектуальных роботов – проблема машинного зрения. В настоящее время в мире изготавливается более 60 тыс. роботов в год. Специальное программное обеспечение
В рамках этого направления разрабатываются специальные языки для решения задач невычислительного плана. Эти языки ориентированы на символьную обработку информации – LISP, PROLOG, SMALLTALK, РЕФАЛ и др. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта, например KEE, ARTS[10]. Достаточно популярно создание так называемых пустых экспертных систем, или "оболочек", – EXSYS, M1 и др., в которых можно наполнять базы знаний, создавая различные системы. Обучение и самообучение
Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление знаний на основе анализа и обобщения данных. Включает обучение по примерам (или индуктивное), а также традиционные подходы распознавания образов. ДАННЫЕ И ЗНАНИЯ
При изучении интеллектуальных систем традиционно возникает вопрос – что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ. Можно предложить несколько рабочих определений, в рамках которых это становится очевидным. Данные – это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства.
При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы: данные как результат измерений и наблюдений; данные на материальных носителях информации (таблицы, протоколы, справочники); модели (структуры) данных в виде диаграмм, графиков, функций; данные в компьютере на языке описания данных; базы данных на машинных носителях. Знания связаны с данными, основываются на них, но представляют результат мыслительной деятельности человека, обобщают его опыт, полученный в ходе выполнения какой-либо практической деятельности. Они получаются эмпирическим путем. Знания – это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области.
При обработке на ЭВМ знания трансформируются аналогично данным: знания в памяти человека как результат мышления; материальные носители знаний (учебники, методические пособия); поле знаний - условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих; знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы – см. далее); базы знаний. Часто используются такие определения знаний: знания – это хорошо структурированные данные, или данные о данных, или метаданные. Существует множество способов определять понятия. Один из широко применяемых способов основан на идее интенсионала. Интенсионал понятия – это определение через понятие более высокого уровня абстракции с указанием специфических свойств. Этот способ определяет знания. Другой способ определяет понятие через перечисление понятий более низкого уровня иерархии или фактов, относящихся к определяемому. Это есть определение через данные, или экстенсионал понятия. Пример 16.1. Понятие "персональный компьютер". Его интенсионал: "Персональный компьютер – это дружественная ЭВМ, которую можно поставить на стол и купить менее чем за $2000 - 3000". Экстенсионал этого понятия: "Персональный компьютер – это Mac, IBM PC, Sinkler...".
Для хранения данных используются базы данных (для них характерны большой объем и относительно небольшая удельная стоимость информации), для хранения знаний – базы знаний (небольшого объема, но исключительно дорогие информационные массивы). База знаний – основа любой интеллектуальной системы. Знания могут быть классифицированы по следующим категориям: поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области; глубинные - абстракции, аналогии, схемы, отображающие структуру и процессы в предметной области. Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет адекватных моделей, позволяющих работать с глубинными знаниями. Кроме того, знания можно разделить на процедурные и декларативные. Исторически первичными были процедурные знания, т.е. знания, "растворенные" в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием искусственного интеллекта приоритет данных постепенно изменялся, и все большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), т.е. увеличивалась роль декларативных знаний. Сегодня знания приобрели чисто декларативную форму, т.е. знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам. Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам: продукционные; семантические сети; фреймы; формальные логические модели. МОДЕЛИ ПРЕДСТАВЛЕНИЯ ЗНАНИЙ Продукционная модель Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).
Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием – действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы). При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения – к данным). Данные – это исходные факты, на основании которых запускается машина вывода – программа, перебирающая правила из базы. Пример 16.2. Имеется фрагмент базы знаний из двух правил: П1: Если "отдых – летом" и "человек – активный", то "ехать в горы". П2: Если "любит солнце", то "отдых летом". Предположим, в систему поступили данные – "человек активный" и "любит солнце". Прямой вывод – исходя из данных, получить ответ. 1-й проход. Шаг 1. Пробуем П1, не работает (не хватает данных "отдых – летом"). Шаг 2. Пробуем П2, работает, в базу поступает факт "отдых – летом". 2-й проход. Шаг 3. Пробуем П1, работает, активируется цель "ехать в горы", которая и выступает как совет, который дает ЭС. Обратный вывод – подтвердить выбранную цель при помощи имеющихся правил и данных. 1-й проход. Шаг 1. Цель – "ехать в горы": пробуем П1 – данных "отдых – летом" нет, они становятся новой целью, и ищется правило, где она в правой части. Шаг 2. Цель "отдых – летом": правило П2 подтверждает цель и активирует ее. 2-й проход. Шаг 3. Пробуем П1, подтверждается искомая цель.
Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода. Имеется большое число программных средств, реализующих продукционный подход (язык OPS 5 [8]; "оболочки" или "пустые" ЭС – EXSYS [10], ЭКСПЕРТ [2]; инструментальные системы ПИЭС [11] и СПЭИС [3] и др.), а также промышленных ЭС на его основе (ФИАКР [8]) и др. Семантические сети
Термин семантическая означает смысловая, а сама семантика – это наука, устанавливающая отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков. Семантическая сеть – это ориентированный граф, вершины которого – понятия, а дуги – отношения между ними. Понятиями обычно выступают абстрактные или конкретные объекты, а отношения – это связи типа: "это" ("is"), "имеет частью" ("has part"), "принадлежит", "любит". Характерной особенностью семантических сетей является обязательное наличие трех типов отношений: класс – элемент класса; свойство – значение; пример элемента класса. Можно ввести несколько классификаций семантических сетей. Например, по количеству типов отношений: однородные (с единственным типом отношений); неоднородные (с различными типами отношений). По типам отношений: бинарные (в которых отношения связывают два объекта); n-арные (в которых есть специальные отношения, связывающие более двух понятий). Наиболее часто в семантических сетях используются следующие отношения: связи типа "часть-целое" ("класс-подкласс", "элемент-множество" и т.п.); функциональные связи (определяемые обычно глаголами "производит", "влияет"...); количественные (больше, меньше, равно...); пространственные (далеко от, близко от, за, под, над...); временные (раньше, позже, в течение...); атрибутивные связи (иметь свойство, иметь значение...); логические связи (и, или, не) и др. Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, соответствующей поставленному вопросу. Пример 16.3. На рис. 16.1 изображена семантическая сеть. В качестве вершин – понятия: Человек, Иванов, Волга, Автомобиль, Вид транспорта, Двигатель.
Рис. 16.1. Семантическая сеть
Основное преимущество этой модели – в соответствии современным представлениям об организации долговременной памяти человека. Недостаток модели – сложность поиска вывода на семантической сети. Для реализации семантических сетей существуют специальные сетевые языки, например NET[12] и др. Широко известны экспертные системы, использующие семантические сети в качестве языка представления знаний – PROSPECTOR, CASNET, TORUS [8, 10]. Фреймы Фрейм (англ. frame – каркас или рамка) предложен М. Минским в 70-е гг. как структура знаний для восприятия пространственных сцен. Эта модель, как и семантическая сеть, имеет глубокое психологическое обоснование. Под фреймом понимается абстрактный образ или ситуация. В психологии и философии известно понятие абстрактного образа. Например, слово "комната" вызывает у слушающих образ комнаты: "жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6-20 м2 ". Из этого описания ничего нельзя убрать (например, убрав окна, мы получим уже чулан, а не комнату), но в нем есть "дырки", или "слоты", – это незаполненные значения некоторых атрибутов – количество окон, цвет стен, высота потолка, покрытие пола и др. В теории фреймов такой образ называется фреймом. Фреймом называется также и формализованная модель для отображения образа. Структуру фрейма можно представить так:
В таблице дополнительные столбцы предназначены для описания типа слота и возможного присоединения к тому или иному слоту специальных процедур, что допускается в теории фреймов. В качестве значения слота может выступать имя другого фрейма; так образуют сети фреймов. Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреймы-экземпляры, которые создаются для отображения реальных ситуаций на основе поступающих данных. Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через: фреймы-структуры, для обозначения объектов и понятий (заем, залог, вексель); фреймы-роли (менеджер, кассир, клиент); фреймы-сценарии (банкротство, собрание акционеров, празднование именин); фреймы-ситуации (тревога, авария, рабочий режим устройства) и др. Важнейшим свойством теории фреймов является заимствованное из теории семантических сетей наследование свойств. И во фреймах, и в семантических сетях наследование происходит по АКО-связям (A-Kind-Of = это). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуются, т.е. переносятся, значения аналогичных слотов. Пример 16.4. Например, в сети фреймов на рис. 16.2 понятие "ученик" наследует свойства фреймов "ребенок" и "человек", которые находятся на более высоком уровне иерархии. Так, на вопрос: "Любят ли ученики сладкое?" Следует ответ: "Да", так как этим свойством обладают все дети, что указано во фрейме "ребенок". Наследование свойств может быть частичным, так, возраст для учеников не наследуется из фрейма "ребенок", поскольку указан явно в своем собственном фрейме.
Основным преимуществом фреймов как модели представления знаний является способность отражать концептуальную основу организации памяти человека [13], а также ее гибкость и наглядность. Специальные языки представления знаний в сетях фреймов FRL (Frame Representation Language) [1] и другие позволяют эффективно строить промышленные ЭС. Широко известны такие фреймо-ориентированные экспертные системы, как ANALYST, МОДИС [3, 8].
Рис. 16.2. Сеть фреймов
|
||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 389; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.205.151 (0.014 с.) |