Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теплопродукция человека в зависимости от температуры воздуха и тяжести выполняемой работыСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Различают три вида теплоотдачи организма человека: излучение (в виде инфракрасных лучей, испускаемых поверхностью тела в направлении предметов с меньшей температурой); конвекция (нагревание омывающего поверхность тела воздуха); испарение влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей и легких. Процентное соотношение между этими видами теплоотдачи человека, находящегося в нормальных условиях в состоянии покоя, выражается следующими цифрами: 45/30/25. Однако указанное соотношение может изменяться в зависимости от конкретных значений параметров микроклимата и тяжести выполняемой работы. Теплоотдача излучением происходит только в том случае, когда температура окружающих предметов ниже температуры открытых участков кожи (32...34, 5 °С) или наружных слоев одежды (27...28 °С для легко одетого человека и приблизительно 24 °С для человека в зимней одежде). Основная часть излучения относится к инфракрасному диапазону с длиной волны (4...50) * 10-6м. При этом теряемое организмом в единицу времени количество теплоты, Дж/с (1 Дж/с = 1 Вт), Pp = Sδ(Tч4 - То4), где S— площадь поверхности тела человека, определяемая по графику (рис. 14.1), м2. Если масса и рост человека неизвестны, то принимают S= 1,5м2; δ — приведенный коэффициент излучения, Вт/(м2*К4): для хлопчатобумажной ткани 5 = 4,2*10-8, для шерсти и шелка δ = 4,3*10, для кожных покровов человека δ = 5,1*10-8; Тч — температура поверхности тела человека: для раздетого человека 306 К (это соответствует 33 °С); Тo — температура окружающей среды, К.
Теплоотдача конвекцией также происходит в случае, если температура поверхности кожи или верхних слоев одежды выше температуры омывающего их воздуха. При отсутствии ветра прилегающий к поверхности кожи раздетого человека слой воздуха толщиной 4...8 мм нагревается за счет его теплопроводности. Более отдаленные слои нагреваются вследствие естественного движения воздуха или принудительного побуждения. С увеличением скорости движения воздуха толщина окружающего человека пограничного слоя уменьшается до 1 мм, а теплоотдача поверхности тела возрастает в несколько раз. Потери теплоты конвекцией через дыхательные пути меньше, чем от кожного покрова, и происходят в тех случаях, когда температура вдыхаемого воздуха ниже температуры тела. Теплоотдача конвекцией повышается с ростом барометрического давления. Приближенно потери теплоты в единицу времени конвекцией, Дж/с, можно определить по формуле Pк1 = 7(0,5 + √v)S(Tч - То) или Рк2 = 8,4(0,273 + √v)S(Tч - То) где v — скорость движения воздуха, м/с. Первую формулу используют при скорости движения воздуха v ≤ 0,6 м/с, вторую — при v > 0,6 м/с. Испарение — это теплоотдача при повышенной температуре воздуха, когда указанные ранее способы теплоотдачи затруднены или невозможны. В обычных условиях на большей части поверхности тела человека происходит неощутимое потоотделение, возникающее в результате диффузии воды без активного участия потовых желез. Исключение составляют поверхности ладоней, подошв и подмышечных впадин (составляющие примерно 10 % поверхности тела), на которых пот выделяется непрерывно. В результате испарения организм в сутки теряет в среднем около 0,6 л воды. Так как на испарение 1 г воды затрачивается приблизительно 2,5 кДж теплоты, то потери ее за сутки составят приблизительно 1500кДж. С увеличением температуры воздуха и степени тяжести работы за счет более активного проникновения жидкости через стенки оплетающих потовые железы артериальных сосудов и нервной регуляции потоотделение усиливается, достигая за смену 5 л, а в некоторых случаях 10... 12 л. Отдача теплоты также возрастает. При слишком интенсивном выделении пот не всегда успевает испариться и может выделяться в виде капель. В этом случае влажный слой на коже препятствует теплоотдаче, приводя в дальнейшем к перегреванию организма. Кроме влаги с потом человек теряет большое количество солей (в 1 л пота содержится 2,5...2,6 г хлорида натрия) и водорастворимых витаминов (С, BI, 62), что приводит к сгущению крови и ухудшению работы сердца. Следует отметить, что при потере количества воды, равного 1 % общей массы тела, у человека возникает чувство сильной жажды; утрата 5 % воды приводит к потере сознания, 10% — к смерти. Количество выделяемого пота зависит и от индивидуальных особенностей организма, а также от степени его приспособляемости к данным климатическим условиям. На интенсивность испарения влаги влияют температура и скорость движения воздуха. Через дыхательные пути испаряется около 300...350 г влаги в сутки, что приводит к потере 750...875 кДж теплоты. Общие потери теплоты испарением в единицу времени, Дж/с, можно приближенно определить по формуле Ри = 0,6547q(1 + kл), где q — интенсивность выделения пота, г/ч, определяемая взвешиванием человека; kл — коэффициент пересчета теплоотдачи через легкие, зависящий от температуры окружающего воздуха: при О "С kл = 0,43, при 18 °С — 0,3, при 28 °С — 0,23, при 35 °С - 0,035 и при 45°С kл = 0,015. 200:: 201:: 202:: 203:: Содержание
203:: 204:: 205:: Содержание 14.3. ТЕПЛОВОЕ СОСТОЯНИЕ ОРГАНИЗМА К показателям, характеризующим тепловое состояние человека, относятся температура тела, температура поверхности кожи и ее топография, теплоощущения, количество выделяемого пота, состояние сердечно-сосудистой системы и уровень работоспособности. Температура тела человека характеризует процесс терморегуляции организма. Она зависит от скорости потери теплоты, которая, в свою очередь, зависит от температуры и влажности воздуха, скорости его движения, наличия тепловых излучений и теплозащитных свойств одежды. Выполнение работ категорий Пб и III сопровождается повышением температуры тела на 0,3...0,5 °С. При повышении температуры тела на 1 С начинает ухудшаться самочувствие, появляются вялость, раздражительность, учащаются пульс и дыхание, снижается внимательность, растет вероятность несчастных случаев. При температуре 39 °С человек может упасть в обморок. Температура кожного покрова человека, находящегося в состоянии покоя в комфортных условиях, находится в пределах 32...34 °С. С повышением температуры воздуха она также растет до 35 °С, после чего возникает потоотделение, ограничивающее дальнейшее увеличение температуры кожи, хотя в отдельных случаях (особенно при высокой влажности воздуха) она может достигать 36...37 °С. Установлено, что при разности температур на центральных и периферических участках поверхности тела менее 1,8 "С человек ощущает жару; 3...5 °С — комфорт; более 6 °С — холод. При увеличении температуры воздуха также уменьшается разница между температурой кожи на открытых и закрытых участках тела. Теплоощущения человека чаще всего оценивают по пяти- или семибалльной шкале: по пятибалльной — "холодно", "прохладно", "комфорт", "тепло", "жарко"; по семибалльной — "очень холодно", "холодно", "прохладно", "комфорт", "тепло", "жарко", "очень жарко". Эти ощущения человека зависят также от термического сопротивления Rт. его одежды, представляющего собой отношение толщины слоя одежды (толщина хлопковых тканей колеблется в пределах 0,10...0,22 мм, а шелковых — 0,043...0,07 мм) к коэффициенту теплопроводности материала λ, из которого она сделана. Для натурального шелка λ = 0,043...0,053 Вт/(м*К), шерстяной ткани — 0,052, льняной ткани — 0,088, кожи — 0,15, для капрона А = 0,24 Вт/(м *К). По семибалльной шкале тепловые ощущения человека, одетого в тонкие брюки, рубашку с длинным рукавом, легкое нижнее белье и выполняющего в помещении не менее 3 ч легкую работу в сидячем положении, можно оценить с помощью следующей формулы: Б7 = 0,243t + 0,049p - 2,803, где Б7 — число баллов (по семибалльной шкале), соответствующее определенному теплоощущению работающего; t — температура воздуха в помещении, "С; р — парциальное давление водяных паров в воздухе, кПа. Необходимое для расчетов по этой формуле парциальное давление паров определяют из выражения p = pHW/100, где рн — парциальное давление насыщенных водяных паров при данной температуре, кПа: 12,513 при 10 °С, 23,83 при 20 "С и 43,25 при 30 °С; W— относительная влажность воздуха, %. Например, при температуре 25°С и относительной влажности 45 % число баллов Б7 = 0,243·25 + 0,049·33,54·45/100 - 2,803 = 4,01, что соответствует ощущению комфорта. Сердечно-сосудистая система испытывает большое напряжение при выполнении тяжелой работы в условиях повышенных температур. Нарушается водный обмен, сгущается кровь, усиливается ее приток к коже и подкожной жировой клетчатке, расширяются периферические сосуды, учащается пульс и снижается артериальное давление. При одной и той же физической нагрузке частота пульса тем больше, чем выше температура окружающего человека воздуха. Работоспособность человека в значительной степени снижается при труде в условиях, сильно отличающихся от комфортных. Отрицательное влияние соответствующих параметров микроклимата на центральную нервную систему, другие органы и системы проявляется в ослаблении внимания, замедлении реакций, ухудшении координации движений, в результате чего уменьшается производительность труда и могут возникать травмы. В отдельных случаях работа при высокой температуре воздуха ведет к снижению производительности труда до 80 % по сравнению с аналогичным показателем, зафиксированным в комфортных условиях. 203:: 204:: 205:: Содержание
205:: 206:: Содержание 14.4. МЕРОПРИЯТИЯ ПО НОРМАЛИЗАЦИИ СОСТОЯНИЯ ВОЗДУШНОЙ СРЕДЫ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ Для нормализации температурно-влажностного режима применяют системы вентиляции, отопления и кондиционирования воздуха. При правильном выборе их типа, производительности и оптимальной конструкции условия труда на рабочих местах поддерживаются в пределах норм с минимальными затратами средств, труда и энергии. Механизация и автоматизация производственных процессов, использование более совершенных машин и оборудования позволяют снизить время пребывания людей на рабочих местах с некомфортными параметрами микроклимата, а также ограничить или исключить контакт с вредными производственными факторами. Чтобы предотвратить избытки теплоты в помещениях, теплоизолируют нагреваемые поверхности оборудования и устанавливают защитные экраны. Дополнительно организуют рациональный питьевой режим с целью компенсации потерь организмом влаги и солей, обеспечивая работающих в горячих цехах подсоленной и охлажденной газированной водой. Практическая реализация такого режима состоит в частом употреблении небольших количеств воды: 100... 150 мл каждые 15...20 мин. При этом следует напоминать работающим, что степень испытываемой жажды всегда меньше, чем фактические потери жидкости. Если значения параметров микроклимата отличаются от нормативных, то необходимо использовать средства индивидуальной защиты работающих. С их помощью можно предотвратить перегрев или переохлаждение организма, а также устранить неблагоприятное воздействие тепловых излучений на органы зрения. Для профилактики отрицательного влияния дискомфортных условий труда важно спланировать рациональное чередование периодов труда и отдыха. При низких температурах, особенно в сочетании с высокой подвижностью воздуха, вводят дополнительные перерывы для обогрева работающих. Температуру в помещениях для обогрева поддерживают в пределах 22...24°С, что несколько выше значений, предусмотренных для санитарно-бытовых помещений. При выполнении работы в условиях высоких температур продолжительность дополнительных перерывов должна быть достаточна для восстановления работоспособности и процессов терморегуляции. При выработке рекомендаций для корректировки соответствующих факторов окружающей среды используют результаты медицинских осмотров, позволяющих своевременно обнаружить отклонения в состоянии здоровья работающих и выявить людей, которым противопоказана работа в условиях, отличающихся от нормальных. 205:: 206:: Содержание
206:: 207:: 208:: 209:: 210:: 211:: Содержание 14.5. ИЗМЕРЕНИЕ ПАРАМЕТРОВ МИКРОКЛИМАТА Чтобы узнать, насколько фактическое состояние воздушной среды в рабочей зоне соответствует нормативным значениям параметров микроклимата, измеряют температуру, влажность, скорость движения воздуха и интенсивность теплового излучения от нагретых тел. По результатам замеров можно также определить эффективность работы технических средств для обеспечения требуемого состояния микроклимата, например, систем отопления и вентиляции. Температуру воздуха чаще всего измеряют спиртовыми или ртутными термометрами. Однако в помещениях с высоким уровнем теплового излучения (кормоприготовительные цехи, котельные и т. п.) температуру следует определять с помощью парного термометра, состоящего из двух ртутных термометров, резервуар одного из которых зачернен, а другого - посеребрен. Истинную температуру воздуха в рабочей зоне (без учета влияния теплоизлучения) рассчитывают по формуле t = tч-k(tч-tc), где tч — показания зачерненного термометра, град; k — константа прибора, указанная в его паспорте; tc — показания посеребренного термометра, град. Для непрерывной записи значений температуры воздуха на бумажную ленту применяют термографы М-16АС (суточный) и М-16АН (недельный). Измерительно-регистрирующая часть их представляет собой биметаллическую пластину, соединенную рычагом со стрелкой, на конце которой закреплено перо. Барабан с бумажной лентой приводится в движение тяговым механизмом. Продолжительность одного оборота барабана часового механизма составляет 26 ч для термографа М-16АС и 176 ч для М-16АН. Температуру и относительную влажность воздуха чаще всего измеряют психрометрами: стационарным Августа и аспирационным Ассмана. Стационарный психрометр Августа (рис. 14.2, а) состоит из двух одинаковых спиртовых термометров. Резервуар одного из них (влажного) обернут гигроскопичной тканью, конец которой опущен в наполняемый дистиллированной водой стаканчик. По ткани к резервуару этого термометра поступает влага взамен испаряющейся. Другой термометр (сухой) показывает температуру воздуха. Показания влажного термометра зависят от содержания водяных паров в воздухе, так как при снижении их массы в единице объема возрастает испарение воды с увлажненной ткани, вследствие чего резервуар охлаждается в большей мере. Определив показания термометров и разность температур, по психрометрической таблице, нанесенной на корпус психрометра, находят относительную влажность воздуха. Психрометр Ассмана (рис. 14.2, б) устроен аналогично. Отличие его заключается в том, что для исключения влияния подвижности воздуха на показания влажного термометра в головной части прибора размещен вентилятор с часовым механизмом (у психрометров типа МВ-4М) или электрическим приводом (у психрометров типа М-34). Вентилятор создает постоянный напор воздуха, а следовательно, и скорость движения его в трубках с резервуарами ртутных термометров постоянна. Трубки предохраняют термометры от механических повреждений и отражают излучения, которые могут исказить показания прибора. Перед проведением измерений пипеткой смачивают ткань влажного термометра, психрометру придают вертикальное положение и приводят во вращение вентилятор. Через 3...5 мин регистрируют установившиеся показания термометров и по прилагаемому к прибору психрометрическому графику определяют относительную влажность воздуха. Относительную влажность можно также определить непосредственно по циферблату гигрометра типа М-68, принцип работы которого основан на способности человеческого волоса изменять свою длину в зависимости от влажности воздуха. Для непрерывной записи значений влажности воздуха на бумажную ленту применяют гигрографы М-21АС (суточный) и М-21АН (недельный). Скорость движения воздуха от 0,5 до 10 м/с измеряют крыльчатым анемометром (рис. 14.3, а), а от 1 до 20 м/с — чашечным (рис. 14.3, б). Устройство и принцип их работы во многом сходны между собой. Посаженное на ось легкое колесо с лопастями (у крыльчатого анемометра) или чашечками соединено системой зубчатых колес с механизмом вращения стрелок. Центральная стрелка основного циферблата показывает единицы и десятки оборотов колеса, а стрелки малых дополнительных циферблатов — сотни и тысячи. С помощью расположенного сбоку рычага (арретира) можно разъединить ось и механизм вращения стрелок или соединить их. Перед проведением измерений записывают показания циферблатов и устанавливают прибор в место контроля так, чтобы ось вращения крыльчатого анемометра была параллельна направлению движения воздуха, а чашечного анемометра — перпендикулярна. После набора оборотов крыльчатки с помощью арретира одновременно включают регистрирующий механизм и секундомер. Через 1...2мин регистрирующий механизм выключают и снова снимают с него показания. Разделив разность конечного и начального показаний счетчика на время экспозиции, выраженное в секундах, находят число делений, которые прошла стрелка прибора за единицу времени. Затем по тарировочному графику, прилагаемому к каждому анемометру, определяют скорость движения воздуха в метрах в секунду. Скорость движения воздуха менее 1 м/с измеряют кататермометром (рис. 14.4), который представляет собой спиртовой термометр с большим шаровым или цилиндрическим резервуаром и капилляром, расширяющимся в верхней части. Принцип действия кататермометра основан на зависимости скорости охлаждения спирта в резервуаре от скорости омывания его воздухом. Перед измерением кататермометр опускают в теплую (60...70 °С) воду и держат в ней до заполнения спиртом половины верхнего резервуара. Обтерев кататермометр, подвешивают его в зоне контроля скорости движения воздуха и, следя за снижением спиртового столбика, с помощью секундомера регистрируют время уменьшения температуры от 38 до 35°С. Затем находят отношение охлаждающей способности воздуха Н к разности температур Q кататермометра (36,5 °С) и воздуха в помещении в момент измерения. Охлаждающую способность воздуха, мкал/(с·см2), определяют по формуле H = F/T, где F— фактор прибора, представляющий собой потери теплоты в милликалориях с 1 см2 поверхности кататермометра за время его охлаждения от 38 до 35 °С (значение F указано на обратной стороне прибора); Т— время, в течение которого столбик спирта опустится с 38 до 35 °С, с. Зная значение H/Q, по справочным данным находят скорость движения воздуха. Интенсивность теплового излучения определяют актинометром (рис. 14.5), на задней стенке которого расположены белые и зачерненные алюминиевые пластины, соединенные с термопарами. Принцип действия прибора основан на возбуждении электродвижущей силы термопарами вследствие того, что черные пластинки под воздействием лучистой энергии нагреваются до более высокой температуры, чем белые. Электродвижущая сила регистрируется гальванометром, шкала которого отградуирована в кал/(см2· мин). Постоянное атмосферное давление, формирующееся над поверхностью земли на высоте, близкой к уровню моря, не оказывает отрицательного влияния на состояние здоровья и работоспособность человека. Однако даже для здоровых людей быстрые изменения давления на несколько миллиметров ртутного столба в ту или другую сторону от значения, нормального для данной климатической зоны, через центральную нервную систему могут вызвать расстройство жизнедеятельности внутренних органов и общее болезненное состояние. Поэтому необходимо контролировать атмосферное давление и его изменения. Атмосферное давление измеряют барометрами, шкала которых может быть отградуирована в миллиметрах ртутного столба (МД-49А) или килопаскалях (БАММ-1). Принцип действия этих приборов основан на свойстве мембраны анероидной коробки деформироваться при изменении давления. Линейное перемещение мембраны передаточным рычажным механизмом преобразуется в угловое перемещение стрелки барометра. Для регистрации изменения атмосферного давления в течение суток или недели применяют барографы М-22АС (суточный) и М-22АН (недельный), принцип работы которых аналогичен работе гигрографов. 206:: 207:: 208:: 209:: 210:: 211:: Содержание
211:: 212:: 213:: 214:: 215:: 216:: 217:: Содержание 14.6. КОНТРОЛЬ СОДЕРЖАНИЯ ВРЕДНЫХ ГАЗОВ И ПАРОВ В Чистый и свежий воздух представляет собой смесь, состоящую из азота (77 %), кислорода (21 %), диоксида углерода (углекислого газа) и других активных газов (1 %) и инертных газов (1 %). Однако в производственных условиях воздух, как правило, загрязняется вредными и опасными для человека газами и парами. Основные источники загрязнения воздуха: автомобильный транспорт, химические и металлургические заводы. В сельскохозяйственном производстве вредные вещества поступают в воздух при опрыскивании и опыливании посевов химикатами, протравливании семян, внесении аммиака в почву. В кабинах мобильных машин, оснащенных двигателями внутреннего сгорания, а также в гаражах, пунктах ремонта и технического обслуживания таких машин может наблюдаться повышенная концентрация угарного газа, оксидов азота, акролеина и тетраэтилсвинца. В животноводческих помещениях воздух загрязняется аммиаком, сероводородом, диоксидом углерода, а также другими вредными газами, парами, выделяемыми животными, и продуктами их жизнедеятельности. В воздухе кормоприготовительных цехов может присутствовать значительное количество оксидов углерода и азота, водяных паров. Большая концентрация аммиака, метана и углекислого газа возможна в колодцах, жижесборниках, навозохранилищах, сенажных башнях и других сооружениях. При повышенной концентрации вредные газы и пары, попадая в организм через органы дыхания, отрицательно влияют на человека: ухудшают самочувствие, снижают работоспособность, а при постоянном воздействии приводят к профессиональным заболеваниям. При очень высокой концентрации таких газов (например, в колодцах, жижесборниках, внутри емкостей) может наступить смерть от удушья после 2...3 вдохов. Некоторые газы (аммиак, ацетилен, метан и др.) создают взрывоопасные смеси. Поэтому для обеспечения безопасных условий труда концентрация каждого вредного газа или пара в воздухе рабочей зоны не должна превышать предельно допустимую (табл. 14.4.). Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны — это концентрации, которые при ежедневной работе (кроме выходных дней) в течение 8 ч или при другой продолжительности, но не более 40 ч в неделю в течение всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Значения ПДК зависят от степени влияния вредного вещества на здоровье и окружающую среду. Для разработки оптимальных мероприятий по нормализации воздушной среды при наличии выделяющихся вредностей на предприятиях периодически контролируют ее состояние. Кроме того, измеряют концентрации вредных газов и паров в воздухе рабочей зоны при изменении технологии, установке новых машин или оборудования, реконструкции отдельных цехов и участков, а также перед началом работ в колодцах, жижесборниках и других закрытых емкостях. Концентрацию газа в воздухе рабочей зоны определяют с помощью специальных приборов, для чего отбирают пробы воздуха на высоте расположения органов дыхания работающих (1,5 м от пола). По результатам анализа пробы воздуха судят о состоянии воздушной среды, об эффективности работы систем вентиляции и аспирации. При оценке условий труда сравнивают фактическую концентрацию вредного газа с предельно допустимой концентрацией и в случае превышения последней нормализуют условия труда с помощью соответствующих мероприятий — изменения технологического процесса, его механизации и автоматизации, герметизации источников выделения вредностей, установки фильтров-поглотителей,
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 450; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.172.250 (0.016 с.) |