Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Полную группу можно определить так: еслиСодержание книги
Поиск на нашем сайте
для любой пары (i ¹ j), тогда {A1, A2, …, An} - полная группа событий. Вероятностью появления события А называют отношение числа исходов, благоприятствующих наступлению этого события, к общему числу всех единственно возможных и несовместных элементарных исходов. Обозначим число благоприятствующих событию А исходов через М, а число всех исходов - N.
Относительной частотой события называется отношение числа испытаний m, при которых событие появилось, к общему числу проведенных испытаний n .
Статистической вероятностью события А называется относительная частота (частость) этого события, вычисленная по результатам большого числа испытаний. Будем обозначать её Р * (А). Следовательно, . При очень большом числе испытаний статистическая вероятность приближенно равна классической вероятности, т.е. Р * (A)» Р(A) Для определения вероятности выпадения 1 или 2 при подбрасывании кости нам необходимо только знать “модель игры “, в данном случае - кость с 6 гранями. Мы можем определить наши шансы теоретически, без подбрасывания кости, это - априорная (доопытная) вероятность. Во втором примере мы можем определить вероятность только по результатам опыта, это - апостериорная (послеопытная) вероятность. То есть классическая вероятность - априорная, а статистическая - апостериорная. Какой бы вид вероятности не был выбран для их вычисления и анализа используется один и тот же набор математических правил.
Свойства вероятности, вытекающие из классического определения. 1. Вероятность достоверного события равна 1, то есть Р() = 1. Действительно, если событие А = , то M = N, значит Р () = N/N = 1. 2.Если событие невозможное, то его вероятность равна 0, то есть Р(Æ)= 0. Если А = Æ, то оно не осуществится ни при одном испытании, то есть M = 0 и Р(Æ) = 0/N = 0. 3.Вероятность случайного события есть положительное число, заключенное между 0 и 1. В самом деле, та к как 0 M N, то 0 M/ N 1, то есть 0 Р(А) 1. 4. Сумма вероятностей противоположных событий равна 1, то есть . В самом деле, А отсюда:
Например, если вероятность извлечения туза из колоды, состоящей из 52 карт, равна 4/52, то вероятность извлечения карты, не являющейся тузом, равна 1 - 4/52 = 48/52. Пример 2.1 Магазин в целях рекламы нового товара проводит лотерею, в которой 1 главный приз, 5 вторых призов, 100 третьих призов и 1000 четвертых призов. В конце рекламного дня выяснилось, что лотерейные билеты получили 10000 покупателей. По правилам розыгрыша, после извлечения выигрышного билета он не возвращается в урну, и покупатель не может получить более одного выигрыша. Чему равна вероятность того, что покупатель, который приобрел рекламируемый товар: а) выиграет первый приз; б) выиграет хотя бы один приз; в) не выиграет ни одного приза? Решение. Определим событие А: «Покупатель выиграл первый приз». Согласно условию задачи в лотерее участвовало 10000 покупателей, отсюда общее число испытаний N = 10000, а число исходов, благоприятствующих событию А, M = 1. Все исходы являются равновозможными, единственно возможными и несовместными элементарными событиями. Следовательно, по формуле классической вероятности: P (A)=0,0001 Соответственно, определим событие В: «Покупатель выиграл любой приз». Для этого события число благоприятствующих исходов M = 1 + 5 + 100 + 1000 = 1106. . Событие «Покупатель не выиграет ни одного приза» - противоположное событию В: «Покупатель выиграет хотя бы один приз», поэтому обозначим его как . По формуле 2.3 найдем: . Ответ. Вероятность того, что покупатель выиграет первый приз, равна 0,0001; любой приз - 0,1106; ни одного приза - 0,8894. . Пример 2.2. Структура занятых в региональном отделении крупного банка имеет следующий вид:
Если один из служащих выбран случайным образом, то какова вероятность, что он: 1. Мужчина-администратор? 2. Женщина-операционист? 3. Мужчина? 4. Операционист? Решение. 1. В банке работают 100 человек, N = 100. Из них 15 – мужчины-администраторы, M = 15. Следовательно, 35 служащих в банке – женщины-операционисты, следовательно, 3. 40 служащих в банке – мужчины, следовательно, 4. Из общего числа служащих в банке 60 – операционисты, следовательно, Ответ. Вероятность того, что один из служащих: 1. 2. 3. 4.
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 523; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.249.191 (0.006 с.) |