Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Таким образом, будем иметь в решении две составляющие для действующих значений напряженийСодержание книги
Поиск на нашем сайте
Для тока согласно уравнению (3) можно записать
где - волновое сопротивление линии. Волновое сопротивление Z В и постоянную распространения γ называют вторичными параметрами длинной линии, которые характеризуют ее свойства как устройства для передачи электрического сигнала. Определяя и , на основании (5) запишем
Аналогичное уравнение согласно (6) можно записать для тока. Слагаемые в правой части соотношения (7) можно трактовать как бегущие волны: первая движется и затухает в направлении возрастания х, вторая убывания х. Действительно, в фиксированный момент времени каждое из слагаемых представляет собой затухающую (вследствие потерь энергии) гармоническую функцию координаты х, а в фиксированной точке – синусоидальную функцию времени. Волну, движущую от начала линии в сторону возрастания х, называют прямой (падающей), а движущуюся от конца линии в направлении убывания х – обратной (отраженной). Коэффициент ослабления показывает как изменяется амплитуда или действующее значение составляющей волны (например прямой волны) на единицу длины в логарифмических единицах , а коэффициент фазы β=Ψ(x)-Ψ(x+1) – как изменяется фаза составляющей волны на единицу длины в однородной линии. На рис. 2 представлена затухающая синусоида прямой волны для моментов времени и . Перемещение волны характеризуется фазовой скоростью. Это скорость перемещения по линии неизменного фазового состояния, т.е. скорость, с которой нужно перемещаться вдоль линии, чтобы наблюдать одну и ту же фазу волны:
Продифференцировав (8) по времени, получим
Длиной волны называется расстояние между двумя ее ближайшими точками, различающимися по фазе на 2 рад. В соответствии с данным определением , Откуда
И с учетом (9) . В соответствии с введенными понятиями прямой и обратной волн распределение напряжения вдоль линии в любой момент времени можно трактовать как результат наложения двух волн: прямой и обратной, перемещающихся вдоль линии с одинаковой фазовой скоростью, но в противоположных направлениях:
где в соответствии с (5) и . Представление напряжения в виде суммы прямой и обратной волн согласно (10) означает, что положительные направления напряжения для обеих волн выбраны одинаково: от верхнего провода к нижнему. Аналогично для тока на основании (6) можно записать
Где и . Положительные направления прямой и обратной волн тока в соответствии с (11) различны: положительное направление прямой волны совпадает с положительным направлением тока (от начала к концу линии), а положительное направление обратной волны ему противоположно. На основании (10) и (11) для прямых и обратных волн напряжения и тока выполняется закон Ома в комплексной форме
Бесконечно длинная однородная линия. Согласованный режим работы В случае бесконечно длинной линии в выражениях (5) и (6) для напряжения и тока слагаемые, содержащие e γ x, должны отсутствовать, т.к. стремление х лишает эти составляющие физического смысла. Следовательно, в рассматриваемом случае =0. Таким образом, в решении уравнений линии бесконечной длины отсутствуют обратные волны тока и напряжения. В соответствии с вышесказанным
На основании соотношений (12) можно сделать важный вывод, что для бесконечно длинной линии в любой ее точке, в том числе и на входе, отношение комплексов напряжения и тока есть постоянная величина, равная волновому сопротивлению: . Таким образом, если такую линию мысленно рассечь в любом месте и вместо откинутой бесконечно длинной части подключить сопротивление, численно равное волновому, то режим работы оставшегося участка конечной длины не изменится. Отсюда можно сделать два вывода: Уравнения бесконечно длинной линии распространяются на линию конечной длины, нагруженную на сопротивление, равное волновому. В этом случае также имеют место только прямые волны напряжения и тока. У линии, нагруженной на волновое сопротивление, входное сопротивление также равно волновому. Режим работы длинной линии, нагруженной на сопротивление, равное волновому, называется согласованным, а сама линия называется линией с согласованной нагрузкой.
|
||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 219; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.130.127 (0.006 с.) |