Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Условия параллельности и перпендик-типрямых.↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги Поиск на нашем сайте
Равенство угловых коэф-товявл-ся необходимым и достаточным условием парал-ти двух прямых. Для перпендик-ти прямых необходимо и достаточно, чтобы их угловые коэф-ты были обратны по величине и противоположны по знаку. Чтобы две прямые были параллельны необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, т.е. их соответствующие координаты были пропорциональны. . Чтобы две прямые были перпендикулярны необходимо и достаточно, чтобы направляющие векторы этих прямых были перпендикулярны, т.е. косинус угла между ними равен нулю. 19.Кривые второго порядка (окружность, парабола, эллипс, гипербола). Аналитическая геометрия в пространстве. Окружность. Окружностью называется геометрическое место точек плоскости, равноудаленных от фиксированной точки, называемой центром окружности. Получим уравнение окружности, если известны ее центр и радиус. Окружность радиуса Rс центром в т. имеет уравнение Эллипс. Эллипсом называется геометрическое место точек плоскости, для каждой из которых сумма расстояний до двух данных точек той же плоскости, называемых фокусами эллипса, есть величина постоянная. Пусть F1и F2 – фокусы эллипса. Начало O системы координат расположим на середине отрезка F1F2. Ось Ox направим вдоль этого отрезка, ось Oy – перпендикулярно к этому отрезку. Пусть сумма расстояний от точки эллипса до фокусов равна 2a, а расстояние между фокусами – 2c. Тогда в выбранной системе координат эллипс имеет уравнение
Прямоуг-ник со стор 2а и 2в назыв-ся основным прямоуг-ником гиперболы. - асимптоты. Равносторонней гиперболой назыв такую гиперболу, где ее полуоси равны a=b. Парабола. Мн-во точек, кажд из котор одинаково удалена от данной точки, назыв фокусом и данной прямой, назыв директрисой. Расст-ние от фокуса F до директрисы назыв параметром(р>0).
; . FM- фокальный радиус т-ки М. О(0;0) – вершина параболы. Т-ма: - общурлин 2го порядка. Уравнение определ либо окр-ть (А=С), эллипс (А*С>0), гиперболу (А*С<0), параболу(А*С=0). Возможный случай вырождения: для эллипса(окр-ти)-в точку или мнимый эллипс(окр-ть); для гиперболы – в пару пересек-сяпрямых; для параболы-в пар парал-ных прямых.
|
|||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 298; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.63.105 (0.005 с.) |