Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Шаговое напряжение и напряжение прикосновенияСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
В любых электрических сетях человек, находящийся в зоне растекания тока, может оказаться под напряжением шага и напряжением прикосновения. Шаговым напряжением (напряжением шага) называется напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага (0,8 м) и на которых одновременно стоит человек. Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается, так как сечение проводника (почвы) увеличивается пропорционально квадрату радиуса, и на расстоянии, примерно равном 20 м, может быть принят равным нулю. Опасность напряжения шага увеличивается, если человек, подвергшийся его воздействию, падает: напряжение шага возрастает, так как ток проходит уже не через ноги, а через все тело человека. Напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно касается человек. Опасность такого прикосновения оценивается значением тока, проходящего через тело человека, или же напряжением прикосновения и зависит от ряда факторов: схемы замыкания цепи тока через тело человека напряжения сети, схемы самой сети, режима ее нейтрали (т.е. заземлена или изолирована нейтраль), степени изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и т.д. Выравнивание потенциалов - снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу (или на поверхности) и присоединенных к заземляющему устройству, либо путем применения специальных покрытий. При распределенном заземляющем устройстве безопасность обеспечивается не только уменьшением потенциала заземлителя, но и выравниванием потенциалов на защищаемой территории до такого значения, чтобы максимальные напряжения прикосновения и шага не превышали допустимых. Изменение потенциала в пределах площадки, на которой размещены электроды заземлителя, происходит плавно. При этом напряжение прикосновения Uпр и напряжение шага Uш имеют небольшие значения по сравнению с потенциалом заземлителя. Однако за пределами контура по его краям наблюдается крутой спад потенциала. Чтобы исключить в этих местах опасные напряжения шага, которые особенно высоки при больших токах замыкания на землю, по краям контура за его пределами (в первую очередь в местах проходов и проездов) укладывают в землю на различной глубине дополнительные стальные полосы, соединенные с заземлителем. Тогда спад потенциала в этих местах происходит по пологой кривой. Внутри помещений выравнивание потенциалов происходит благодаря металлическим конструкциям, трубопроводам, кабелям и подобным им проводящим предметам, связанным с разветвленной сетью заземления. Арматура железобетонных зданий также способствует выравнивание потенциалов.
38.Шаговое напряжение и напряжение прикосновения. Выравнивание потенциалов. Шаговое напряжение — напряжение, обусловленное электрическим током, протекающим в земле или токопроводящем полу, и равное разности потенциалов между двумя точками поверхности земли (пола), находящимися на расстоянии одного шага человека. Шаговое напряжение зависит от длины шага, удельного сопротивления грунта и силыпротекающего через него тока. Опасное шаговое напряжение может возникнуть, например, около упавшего на землю провода под напряжением или вблизи заземлителей электроустановок при аварийном коротком замыкании на землю (допустимые значения сопротивления заземлителей и удельное сопротивление грунта нормируются для того, чтобы избежать подобной ситуации).[1] При попадании под шаговое напряжение возникают непроизвольные судорожные сокращения мышц ног и, как следствие, падение человека на землю. Ток начинает проходить между новыми точками опоры — например, от рук к ногам, что чревато смертельным поражением. При подозрении на шаговое напряжение надо покинуть опасную зону минимальными шажками («гусиным шагом») или прыжками. Особо опасно шаговое напряжение для крупного рогатого скота, так как расстояние между передними и задними ногами у этих животных очень велико и, соответственно, велико напряжение, под которое они попадают. Нередки случаи гибели скота от шагового напряжения. Напряжение прикосновения — напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного. Ожидаемое напряжение прикосновения — напряжение между одновременно доступными прикосновению проводящими частями, когда человек или животное их не касается. Выравнивание потенциалов — снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.
39.Устройство заземлений и занулений как мероприятий электробезопасности и пожарной безопасности. Заземление или зануление применяют во всех случаях при напряже- нии 380 В (и выше) переменного и 440 В и выше постоянного тока. В помещениях с повышенной опасностью, особо опасных, в наружных установках эти защитные меры применяют при напряжениях выше 42 В переменного и 110 В постоянного тока. Заземлять или занулять необходимо следующие части электроустановок: корпуса трансформаторов; рамы и приводы выключателей и других коммутационных аппаратов; вторичные обмотки измерительных трансформаторов; каркасы распределительных щитов и щитков, пультов и щитов управления, шкафов с электрооборудованием. Съемные или открывающиеся части щитов и шкафов должны быть занулены отдельным гибким проводником, если на этих частях установлено электрооборудование напряжением выше 42 В переменного или 110 В постоянного тока. Зануляют также металлические оболочки и броню кабелей, проводов, металлические кабельные конструкции и муфты, стальные трубы электропроводки, тросы, на которых подвешены провода, кожухи шинопроводов, короба и лотки, арматуру железобетонных опор и проволочные оттяжки любых опор, а также все другие металлоконструкции, связанные с установкой электрооборудования. ПУЭ не требуют заземлять или занулять что-либо в помещениях без повышенной опасности поражения электрическим током, в частности в жилых и общественных помещениях с деревянными или пластиковыми полами, если номинальное напряжение электрооборудования 220 В и ниже. Зануление здесь только повысило бы опасность при случайном прикосновении одновременно к токоведущим частям и к зануленным, т. е. к связанному с землей корпусу электрооборудования. Не требуется также занулять в кухнях, ванных комнатах и туалетах квартир металлические корпуса стационарно установленного осветительного электрооборудования и переносных электроприборов и машин мощностью до 1,3 кВт (стиральные и швейные машины, холодильники, утюги и т. п.). 40.Расчет защитного заземления. 41. Эксплуатация заземления и зануления. Электробезопасность при противопожарном обследовании электроустановок. Общие требования эксплуатации. При приемке в эксплуатацию зземляющих устройств после окончания монтажных работ должна быть представлена следующая техническая документация: исполнительные чертежи и схемы заземляющего устройства; акт на подземные работы (укладка заземлителей и заземляющих проводников); протоколы испытаний заземляющих устройств. При эксплуатации должны производиться периодические проверки и испытания заземляющих устройств (внешний осмотр заземляющих проводников и контактов, измерения сопротивления и т. п.). Если соединение выполняется сваркой, сопротивление контакта всегда удовлетворительно. Наиболее вероятным местом, в котором возможен слабый контакт, а следовательно, и возникновение искрения или нагрева, является болтовое соединение сети заземления с электрооборудованием. В этих местах необходима периодическая проверка целостности контактов и их затяжки. Осмотры заземляющего устройства и измерение его сопротивления следует производить в сроки, устанавливаемые системой ППР, не реже одного раза в три года. Постоянное заземляющее устройство должно иметь паспорт, схему, должны быть указаны основные технические и расчетные величины, результаты осмотров и испытаний, характер проведенных ремонтов и изменений, внесенных в устройство заземлений. От контроля состояния нулевых защитных проводников в процессе эксплуатации во многом зависит безопасность лиц, работающих с зануленным электрооборудованием. Контроль предусматривает периодические измерения сопротивления цепи «фаза – нуль» (или сразу тока однофазного КЗ) и сопротивлений ответвлений от магистрального нулевого защитного проводника к отдельным зануляемым электроприемникам, а также периодические осмотры этих ответвлений. Согласно правилам, после монтажа электроустановки (перед приемкой ее в эксплуатацию), а также после капитальных ремонтов электропроводки или электроприемников, но не реже чем раз в 5 лет полагается измерять сопротивление цепи проводников «фазный – нулевой» для определения тока однофазного КЗ при замыкании на корпус наиболее удаленных и мощных электроприемников. Такие измерения во взрывоопасных зонах проводятся для всех электроприемников. Под электробезопасностью понимается система организационных и технических мероприятий по защите человека от действия электрического тока, электрической дуги, статического электричества, электромагнитного поля. Электротравма - это результат воздействия на человека электрического тока и электрической дуги. Электрический ток, проходя через живой организм, производит термическое (тепловое) действие, которое выражается в ожогах отдельных участков тела, нагреве кровеносных сосудов, крови, нервных волокон и т.п.; электролитическое (биохимическое) действие - выражается в разложении крови и других органических жидкостей, вызывая значительные нарушения их физико-химических составов; биологическое (механическое) действие - выражается в раздражении и возбуждении живых тканей организма, сопровождается непроизвольным судорожным сокращением мышц (в том числе сердца, лёгких). К электротравмам относятся электрические ожоги (токовые, или контактные; дуговые; комбинированные или смешанные), электрические знаки («метки»), металлизация кожи, механические повреждения, электроофтальмия, электрический удар (электрический шок). В зависимости от последствий электрические удары делятся на четыре степени: судорожное сокращение мышц без потери сознания, судорожное сокращение мышц с потерей сознания, потеря сознания с нарушением дыхания или сердечной деятельности, состояние клинической смерти в результате фибриляции сердца или асфиксии (удушья). 42.Молния и ее характеристики. Пожаро- и взрывоопасность воздействия молнии. Молния представляет собой электрический разряд в атмосфере между заряженным облаком и землей, между разноименно заряженными частями облака или соседними облаками. Длина ее канала обычно достигает нескольких километров, причем значительная его часть находится в грозовом облаке. До появления разряда происходит накопление и разделение электрических зарядов в облаке, чему способствуют аэродинамические и термические процессы: восходящие воздушные потоки, конденсация паров на высоте от 1 до 6 км, образование капель, их дробление. Вертикальные потоки теплого воздуха могут создаваться при усиленном местном нагреве почвы (тепловые грозы, охватывающие небольшое пространство) и во время вторжения клиновидной массы холодного воздуха (фронтальные грозы). Нормально земля заряжена отрицательно с поверхностной плотностью δ - при существовании электрического поля земли с напряженностью Е н. Второй «обкладкой» этого сферического конденсатора является положительно заряженная ионосфера, расположенная очень высоко. Под действием Е н падающая капля поляризуется, в нижней ее части появляется положительный заряд, в верхней – отрицательный. Движущиеся в восходящем потоке воздуха электроны притягиваются нижней частью капли, а более положительные инерционные ионы воздуха отталкиваются и уносятся далее, сосредоточиваясь вверху. В результате этого капли получают суммарный отрицательный заряд и наполняют нижнюю часть облака со значительной объемной плотностью, где может находиться иногда и не- большой объемный положительный заряд. Внутри облака образуется электрическое поле с напряженностью Е об между распределенными разнополярными зарядами. Нижняя часть индуцирует на поверхности земли положительный заряд с плотностью δ+ и появляется местное грозовое электрическое поле с напряженностью Е г, достигающей иногда 100-200 кВ/м. Разряд облака на землю (рис. 8.2) имеет вид линейной молнии и начинается в большинстве случаев при высокой концентрации в нем зарядов и напряженности Е г=20-30 кВ/см у его выступающих частей. Этому благоприятствует меньшая плотность воздуха вокруг облака, чем плотность у земли. Исследованиями в России и за рубежом выявлены условия возникновения молнии и ее характеристики. Для равнинных районов делают различие между разрядами молнии непосредственно в землю или в объекты высотой до 100 м и разрядами в высотные здания и сооружения: радио и телевизионные мачты, заводские трубы. В первом случае характерны нисходящие, а во втором – восходящие разряды (молнии). Нисходящий разряд между облаком и землей разделяется на лидерный и главный. Он обычно начинается с прорастания от облака к земле слабосветящегося канала – ступенчатого лидера движущегося прерывисто (ступенями). Длина каждой ступени около 50 м, средняя ско- рость ее распространения составляет (2-5) 105 м/с. Сведения о восходящих молниях появились лишь в последние десятилетия, когда начались системати- ческие наблюдения за грозопоражаемостью очень высоких сооружений, например Останкинской телевизионной башни. Наибольшую опасность представляет нисходящая отрицательная молния между облаком и землей (объектом) в виде линейной молнии, с ко- торой связано подавляющее большинство пожаров и повреждений зданий, сооружений, линий электропередач, подстанций. Таким образом, для молниезащиты представляет интерес только ли- нейная, а не шаровая молния как редкое явление. Электрическими харак- теристиками молнии являются амплитуда тока I м (наибольшее значение тока главного разряда первой компоненты), крутизна тока α, длина фронта волны тока τф и длина волны тока τ в. Амплитуда I м изменяется в очень широких пределах, достигая иногда 230-250 кА. Чем больше амплитуда, тем меньше вероятность ее появления. Крутизна α = di м/ d τ характеризует скорость нарастания тока, т.е. от- ношение приращения тока Δ i м к очень малому промежутку времени Δ t, и является переменной величиной. Она меньше в начале и в конце восходя- щей ветви тока, на которой происходит быстрое его изменение, и велика в ее середине. Величина α всегда превышает 5 кА/мкс и может достигать 80 кА/мкс. Средняя крутизна α = I м/τф и пропорциональна tgα (α - угол на- клона штрихпунктирной кривой к оси времени) на рис. 8.3. Максимальная расчетная крутизна принимается равной 50 кА/мкс. На ниспадающей ветви кривой ток изменяется медленней, его крутизна гораздо меньше и ее во внимание не принимают. Длиной фронта τф называют время от начала до конца нарастания то- ка молнии. На этом участке изменение тока наиболее интенсивное. Вели- чина τф первых компонент составляет 1,5–10 мкс. Чем больше амплитуда, тем обычно больше и τф. Для последующих компонент длина фронта вол- ны меньше примерно в 2,5 раза. За расчетную величину рекомендуется принимать τф = 1,5 мкс. Длиной волны принято считать время τ в, протекающее от начала до то- го момента, когда i м = 0,5 I м и изменяется от 20 до 100 мкс. Расчетной вели- чиной принимают τф = 50 мкс. Иногда кривую тока молнии идеализируют. Если интересуются про- цессами на фронте, то считают, что после t = τф ток не изменяется и оста- ется равным I м. Наоборот, для анализа воздействия на ниспадающей ветви, например теплового воздействия, пренебрегают фронтом и полагают, что ток сразу достигает значения I м и затем медленно спадает по закону i м = I мe-1/ Т, где Т – некоторая постоянная величина. Воздействие молнии может быть двояким. Во-первых, оно может поражать здания и установки непосредственно, что называется прямым ударом, или первичным воздействием. Прямой удар молнии характеризуется непосредственным контактом канала молнии со зданием или сооружением и сопровождается протеканием через него тока молнии. Во-вторых, она может оказывать вторичные воздействия, объясняемые электростатической и электромагнитной индукцией, а также заносом высоких потенциалов через надземные и подземные металлические коммуникации, что является следствием прямого удара молнии. Вторичные воздействия создают опасность искрения внутри защищаемого объекта. Прямой удар молнии обуславливает следующие воздействия на объекты: термические, механические и электрические. Все эти воздействия могут быть причинами пожаров, взрывов, механических разрушений, перенапряжения на пораженных элементах объекта, проводах и кабелях электрических сетей, поражения людей. 43. Грозовая деятельность и грозопоражаемость зданий и сооружений. Классификация зданий и сооружений по устройству молниезащиты. Среднегодовая продолжительность гроз в произвольном пункте на территории СССР, по утвержденным для некоторых областей СССР региональным картам продолжительности гроз, или по средним многолетним(порядка 10 лет) данным метеостанции, ближайшей от места нахождения здания или сооружения. Подсчет ожидаемого количества N поражениймолнией в год производится по формулам: для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни) - для зданий и сооружений прямоугольной формы - где h - наибольшая высота здания или сооружения, м; S, L -соответственно ширина и длина здания или сооружения, м; n -среднегодовое число ударов молнии в 1 км2 земной поверхности (удельная плотность, ударов молнии в землю) в месте нахождения здания или сооружения. Для зданий и сооружений сложной конфигурации в качестве S и L рассматриваются ширина и длина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане. Для произвольного пункта на территории СССР удельная плотность ударов молнии в землю n определяется исходя из среднегодовой продолжительности гроз в часах следующим образом:
Тяжесть опасных последствий прямого удара молнии при ее термических, механических и электрических воздействиях, а также искрениях и перекрытиях, вызванных другими видами воздействий, зависит от конструктивно-планировочных особенностей зданий и сооружений и пожаровзрывоопасности технологического процесса. Например, производствах, постоянно связанных с наличием открытого пламени, при применении несгораемых материалов и конструкций протекание тока молнии не представляет большой опасности. Однако наличие внутри объекта взрывоопасной или пожароопасной среды создает угрозу пожара, разрушений, человеческих жертв, больших материальных убытков. При таком разнообразии конструктивных и технологических условий предъявлять одинаковые требования к молниезащите всех объектов означало бы или предусматривать чрезмерные излишества, или мириться с неизбежностью значительных убытков, вызванных последствиями поражения молнией. I к а т е г о р и я – здания и сооружения или их части с взрывоопасными зонами классов В-I и В-II по Правилам устройства электроустановок (ПУЭ-86). В них хранятся или содержатся постоянно, либо появляются во время производственного процесса смеси газов, паров или пыли горючих веществ с воздухом или иными окислителями, способные взорваться от электрической искры. I I к а т е г о р и я – здания и сооружения или их части, в которых имеются взрывоопасные зоны классов В-Iа, В-Iб, В-IIа согласно ПУЭ. В них взрывоопасные смеси могут появляться лишь при аварии или неисправностях в технологическом процессе. К этой категории принадлежат также наружные технологические установки и склады, содержащие взрывоопасные газы и пары, горючие и легковоспламеняющиеся жидкости (газгольдеры, цистерны и резервуары, сливно-наливные эстакады), отнесенные по ПУЭ к взрывоопасным зонам класса В-Iг. I I I к а т е г о р и я – несколько вариантов зданий, в том числе: здания и сооружения с пожароопасными зонами классов П-I, П-II и П-IIа согласно ПУЭ; наружные технологические установки, открытые склады горючих веществ, где применяются или хранятся горючие жидкости с температурой вспышки паров выше 61 °С или твердые горючие вещества, отнесенные по ПУЭ к зоне класса П-III. 44. Молниеотводы: конструктивные типы и характеристика элементов. Аналитическая оценка параметров и графическое построение зон защиты. Средством защиты от прямых ударов молнии служит молниеотвод –устройство, рассчитанное на непосредственный контакт с каналом молнии и отводящее ее ток в землю. По типу молниеприемников молниеотводы делятся на стержневые, тросовые и сеточные; по количеству и общей зоне защиты – на одиноч- ные, двойные и многократные. Кроме того, различают молниеотводы от- дельно стоящие, изолированные и не изолированные от защищаемого зда- ния. Здания и сооружения от прямых ударов защищают молниеотводами, каждый из которых конструктивно состоит из молниеприемника, непосредственно воспринимающего удар молнии, токоотвода, соединяющего молниеприемник с заземлителем, и заземлителя, через который ток молнии стекает в землю. Вертикальная конструкция (столб, мачта) или часть сооружения, предназначенная для закрепления молниеприемника и токоотвода, называется опорой молниеотвода. Опоры стержневых и тросовых молниеотводов, как отдельно стоящих, так и устанавливаемых на защищаемом объекте, могут быть деревянными, металлическими и железобетонными. Деревянная опора обычно состоит из основной стойки и пасынков, выполненных из дерева или железобетона (последние предпочтительнее). Деревянные части, особенно подземные, антисептируют. Высота такого молниеотвода редко превышает 25 м. В землю опора зарывается на 0,1–0,2 ее полной высоты в зависимости от грунта. Для опор используют древесину хвойной породы (сосна, лиственница, ель, пихта). Диаметр бревна в верхнем срубе должен быть не менее 100 мм. Опоры высотой более 8-10 м выполняют на одном или двух пасынках высота которых зависит от высоты молниеотвода. Для увеличения срока службы деревянных опор рекомендуется применять железобетонные пасынки, особенно в грунтах, где процесс гниения наиболее интенсивен (в суглинках). Железобетонные пасынки изготовляют из бетона марки не ниже М200, армированного круглой сталью марки Ст 3 или Ст 5. В поперечнике пасынки могут быть прямоугольного двутаврового, круглого и других сечений. Металлическую опору для молниеотвода высотой 20-75 м чаще всего выполняют в виде жесткой решетчатой конструкции. Ее устанавливают на четырех железобетонных подножниках, наверху к ней приваривают молниеприемник и предохраняют от коррозии регулярной окраской. Такой молниеотвод не требует специального токоотвода, так как сам хорошо проводит ток. Железобетонные опоры могут быть различной формы (рис. 8.9, в), арматура в них частично или полностью предварительно напряженная. Бетон может быть вибрированным или центрифугированным. На вершине опоры устанавливают молниеприемник и соединяют с токоотводом, который прокладывают по опоре. В некоторых случаях молниеприемник соединяют с арматурой, используемой в качестве токоотвода. Но именно эти места оказываются нередко ненадежными, так как требуется либо вывод части арматуры наружу, либо пропуск в нее соединительных проводников. На этих участках постепенно начинается разрушение, особенно в прибрежных районах морей. Железобетонные опоры экономически более выгодны, они проще в эксплуатации и долговечны. Опоры стержневых молниеотводов должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов – с учетом натяжения троса и действия на него ветровой и гололедной нагрузки. Молниеотводы, устанавливаемые на сооружении, делятся на настенные и кровельные. Первые применяют чаще, их молниеприемники изготавливают из трубы или угловой стали и закрепляют посредством скоб, хомутов или кронштейнов. Молниеприемники кровельные чаще всего выполняют из труб разного диаметра и снабжают фланцами для крепления к крыше при помощи болтов. Дополнительная устойчивость достигается посредством оттяжек из полосовой или угловой стали. Высота таких молниеприемников колеблется от 5 до 10 м. Опорами стержневых молниеотводов могут служить стволы деревьев, растущих вблизи защищаемыхзданий и сооружений. При этом если дерево находится на расстоянии менее 5 м от зданий и сооружений III, IV и V степени огнестойкости (II и III категория молниезащиты), то необходимо по стене защищаемого здания против ствола проложить токоотвод и присоединить под землей к заземлителю или же от молниеприемника токоотвод перебросить на другое дерево, на отдельную стойку, отстоящие от здания более чем на 5 м. Если дерево невысокое, то на него устанавливают шест с молниеприемником, это удешевляет молниезащиту. Кроме того, деревья создают дополнительное экранирование от заряженного облака. Для тросовых молниеотводов можно использовать те же опоры, но требуется иногда повышать их устойчивость оттяжками или подкосами. Выбор того или иного материала опор обуславливается в основном необходимой высотой молниеотводов, расчетными механическими нагрузками, а также экономическими соображениями. Следует также учитывать их сочетание с архитектурой защищаемого объекта, климатическими условиями. Молниеприемники стержневые, тросовые и в виде сетки непосредственно воспринимают прямой удар молнии и должны выдерживать ее термическое и динамическое воздействия, быть надежными в эксплуатации. Стержневые молниеприемники изготовляются из покрытой антикоррозийной защитой (оцинкование, лужение, покраска) круглой и угловой стали или из некондиционных водогазопроводных труб. Конец трубы сплющивают или надежно закрывают металлической пробкой. Наименьшее сечение молниеприемника должно быть 100 мм2 (это позволяет выдержать термические и динамические воздействия тока молнии), а длина не менее 200 мм. В качестве молниеприемников можно использовать дымовые, выхлопные и другие металлические трубы объекта, дефлекторы (если они не выбрасывают горючие пары и газы), кровлю и другие металлические элементы сооружений. Применяют молниеприемники и в виде сетки, сваренной из круглой стали диаметром 6-8 мм или полосовой стали сечением не менее 48 мм2, уложенных на кровлю под гидро- или теплоизоляцию (если они несгораемые). Это не затруднит отток воды с кровли и очистку от снега. Шаг ячейки берут 6×6 м для зданий II категории, а для зданий III - 12×12 м. Однако укладка сеток рациональна лишь в зданиях с горизонтальными крышами, где равновероятно поражение молнией любого их участка. При больших уклонах крыши наиболее вероятны удары молнии вблизи ее конька, и в этих участках укладка сетки по всей поверхности кровли приведет к неоправданным затратам металла. В этом случае бо- лее экономичен вариант установки стержневых или тросовых молниеприемников, в зону защиты которых входит весь объект. По этой причине укладка молниеприемной сетки рекомендуется на неметаллических кровлях с уклоном не более 1:8. Иногда возвышающиеся элементы кровли снабжают молниеприемниками, соединенными с сеткой посредством сварки. На деревьях молниеприемником может служить выступающий конец токоотвода в виде петли на участке до 400 мм от верхней точки. Тросовый молниеприемник выполняют из стального многопроволочного и только оцинкованного троса диаметром до 7 мм (сечение не менее 35 мм2). Токоотводы молниеотводов применяют для соединения молниеприемников с заземлителями из стали любого профиля. Их рассчитывают на пропускание полного тока молнии без нарушений и существенного перегрева. Они должны быть оцинкованы, пролужены или окрашены для предупреждения коррозии. Не рекомендуется применять многопроволочный стальной трос, если у него не оцинкована каждая нить. Наименьшее сечение токоотводов, выполненных из угловой и полосовой стали и расположенных вне сооружения на воздухе, равно 48 мм2, для расположенных внутри – 24 мм2, а круглые токоотводы должны иметь наименьший диаметр 6 мм. Токоотводами могут служить арматура железобетонных конструкций, направляющие лифтов, пожарные лестницы, водопроводные, водосточные и канализационные трубы, колонны, стенки резервуаров, электрически надежно связанные по всей длине. Соединения токоотводов, специальных и естественных, должны быть сварными (внахлест). Количество их необходимо резко ограничить. Болтовые соединения допускают только для объектов с III категорией устройства молниезащиты и тогда их не окрашивают, а лудят. С заземлителями токоотводы соединяют только сваркой, и площадь контакта во всех случаях не менее двух площадей сечения деталей, а длина – около шести диаметров проволоки или двойной ширины полосы или полки уголка. Если токоотводы присоединяют к отдельным заземлителям и они электрически связаны друг с другом, то на высоте около 1,5 м от поверхности земли устанавливают надежный болтовой зажим, позволяющий отсоединить токоотвод для контроля заземлителя (рис. 8.10). Токоотводы от молниеприемников прокладывают кратчайшим путем к заземлителю. От входов в здания их нужно располагать на таком расстоянии, чтобы с ними не могли соприкасаться люди. Необходимо избегать острых углов и тем более петель в токоотводе, так как значительные электродинамические усилия при больших токах молнии могут разорвать его на этих участках или вызвать искровое перекрытие между ближайшими точками петли. Металлическая кровля, короба и трубы могут быть соединены с токоотводами болтовыми зажимами. Заземляющие устройства являются важнейшим элементом в ком- плексе средств обеспечения защиты объектов от прямого удара молнии, заноса высоких потенциалов по коммуникациям и электростатической индукции. Основной частью их являются собственно заземлители, находящиеся в достаточно хорошо проводящей среде. Заземлитель молниезащиты – один или несколько заглубленных в землю проводников, предназначенных для отвода в землю токов молнии или ограничения перенапряжений, возникающих на металлических корпусах, коммуникациях при близких разрядах молнии. Они бывают одиночными (простыми) или сложными (комбинированными). К первым относятся трубы, электроды из круглой, полосовой, угловой и листовой стали, железобетонные подножки и сваи, а сложные образуются из комбинаций простых. Одиночные делятся на сосредоточенные и протяженные. У первых потенциал практически по длине не изменяется, у вторых потенциалы начала и конца отличаются друг от друга вследствие большой длины электродов, малого их сечения, высокого удельного сопротивления материалов или высокой удельной проводимости грунта. 45.Особенности и требования к молниезащите зданий и сооружений различных категорий. Эксплуатация молниезащитных устройств.
|
||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 10590; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.119.8 (0.017 с.) |