Механизмы и модели поляризации диэлектриков: неполярные и полярные разреженные и плотные газы; сегнетоэлектрики, пьезоэлектрики и пироэлектрики. Применение диэлектриков в технике. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Механизмы и модели поляризации диэлектриков: неполярные и полярные разреженные и плотные газы; сегнетоэлектрики, пьезоэлектрики и пироэлектрики. Применение диэлектриков в технике.



Сегнетоэлектрики — диэлектрики, которые обладают в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в условиях отсутствия внешнего электрического поля. К сегнетоэлектрикам относятся, например, подробно изученные И. В. Курчатовым (1903—1960) и П. П. Кобеко (1897—1954) сегнетова соль NaKC4H4O6•4Н2O (от нее и было получено данное название) и титанат бария ВаТiO3.
ПЬЕЗОЭЛЕКТРИКИ

кристаллические вещества, в к-рых при сжатии или растяжении в определённых направлениях возникает электрич. поляризация даже в отсутствии электрич. поля (п р я м о й п ь е з о э ф ф е к т). Следствием прямого пьезоэффекта явл. обратный п ь е з о э ф ф е к т — появление механич. деформации под действием электрич. поля. Связь между механич. и электрич. переменными (деформацией и электрич. полем) носит в обоих случаях линейный характер. Обратный пьезоэффект следует отличать от электрострикции.

Пироэлектрики — кристаллические диэлектрики, обладающие самопроизвольной (спонтанной) поляризацией в отсутствие внешних воздействий. Обычно спонтанная поляризация не заметна, так как электрическое поле, создаваемое ею, компенсируется полем свободных электрических зарядов, которые «натекают» на поверхность пироэлектрика из его объёма и из окружающего воздуха. При изменении температуры величина спонтанной поляризации изменяется, что вызывает появление электрического поля, которое можно наблюдать до его компенсации свободными зарядами.

Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Плотность свободных носителей заряда в диэлектрике не превышает 108 шт/см³. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле.
Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.
К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком.

Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.

Электрический ток и его основные характеристики: физическая сущность явления; дрейфовая скорость, плотность и сила электрического тока; закон сохранения электрического заряда в виде уравнения непрерывности.

Электрическим током называют упорядоченное движение заряженных частиц или заряженных макроскопических тел. Различают два вида электрических токов – токи проводимости и конвекционные токи.

Током проводимости называют упорядоченное движение в веществе или вакууме свободных заряженных частиц – электронов проводимости (в металлах), положительных и отрицательных ионов (в электролитах), электронов и положительных ионов (в газах), электронов проводимости и дырок (в полупроводниках), пучков электронов (в вакууме). Этот ток обусловлен тем, что в проводнике под действием приложенного электрического поля напряженностью происходит перемещение свободных электрических зарядов.
Конвекционным электрическим током называют ток, обусловленный перемещением в пространстве заряженного макроскопического тела
Для возникновения и поддержания электрического тока проводимости необходимы следующие условия:
1) наличие свободных носителей тока (свободных зарядов);
2) наличие электрического поля, создающего упорядоченное движение свободных зарядов;
3) на свободные заряды, помимо кулоновских сил, должны действовать сторонние силы неэлектрической природы; эти силы создаются различными источниками тока (гальваническими элементами, аккумуляторами, электрическими генераторами и др.);
4) цепь электрического тока должна быть замкнутой.
За направление электрического тока условно принимают направление движения положительных зарядов, образующих этот ток.
Количественной мерой электрического тока является сила тока I - скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение S проводника в единицу времени:

Ток, сила и направление которого не изменяются с течением времени, называется постоянным Для постоянного тока

Электрический ток, изменяющийся с течением времени, называется переменным. Единица силы тока – ампер (А). В СИ определение единицы силы тока формулируется следующим образом: – это сила такого постоянного тока, который при протекании по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, создает между этими проводниками силу,равную на каждый метр длины.
Плотностью тока называют векторную физическую величину, совпадающую с направлением тока в рассматриваемой точке и численно равную отношению силы тока dI, проходящего через элементарную поверхность, перпендикулярной направлению тока, к площади этой поверхности:

Единица плотности тока – ампер на квадратный метр (А/м2).
Плотность постоянного электрического тока одинакова по всему поперечному сечению однородного проводника. Поэтому для постоянного тока в однородном проводнике с площадью поперечного сечения S сила тока равна

Физическая величина, определяемая работой сторонних сил при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС) источника:

Единица ЭДС – вольт (В). Сторонняя сила, действующая на заряд , может быть выражена через напряженность поля сторонних сил

Тогда работа сторонних сил по перемещению заряда на замкнутом участке цепи будет равна:

 

Разделив на и учитывая (получим выражение для ЭДС, действующей в цепи:

Линейные электрические цепи. Однородный участок линейной цепи постоянного тока: закон Ома, правило знаков; закон Джоуля-Ленца, баланс мощностей; последовательное и параллельное соединения однородных участков цепи.

При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же:

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

Резисторы

Катушка индуктивности

Электрический конденсатор

.

Параллельное соединение

Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединённых проводниках:

Напряжение на участках цепи АВ и на концах всех параллельно соединённых проводников одно и то же:

Резистор

При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора )

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее(искомое) сопротивление.

Для двух параллельно соединённых резисторов их общее сопротивление равно: .

Если , то общее сопротивление равно:

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Катушка индуктивности

Электрический конденсатор

.

Закон Ома для участка цепи. отношение напряжения U между концами металлического проводника, являющегося участком электрической цепи, к силе тока I в цепи есть величина постоянная:

Эту величину R называют электрическим сопротивлением проводника.
Единица электрического сопротивления в СИ — ом (Ом). Электрическим сопротивлением 1 Ом обладает такой участок цепи, на котором при силе тока 1 А напряжение равно 1 В:

.

Опыт показывает, что электрическое сопротивление проводника прямо пропорционально его длине l и обратно пропорционально площади S поперечного сечения:

.

Постоянный для данного вещества параметр называется удельным электрическим сопротивлением вещества.
Экспериментально установленную зависимость силы тока I от напряжения U и электрического сопротивления R участка цепи называют законом Ома для участка цепи:

.

Закон Джоуля-Ленца формула и формулировка

Так или иначе, оба ученых исследовали явление нагревания проводников электрическим током, они установили опытным путём следующую закономерность: количество теплоты, которое выделяется в проводнике с током, прямо пропорционально сопротивлению проводника, квадрату силы тока и времени прохождения тока.

Позже дополнительные исследования выявили, что данное утверждение справедливо для всех проводников: жидких, твёрдых и даже газообразных. В связи с этим открытая закономерность стала законом.

Итак, рассмотрим сам закон Джоуля-Ленца и его формулу, которая выглядит так:



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 400; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.244.216 (0.016 с.)