Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Аппаратура НЕРПА. Назначение, структурная схема, принцип работы.↑ ⇐ ПредыдущаяСтр 6 из 6 Содержание книги
Поиск на нашем сайте
Аппаратура НЕРПА определяет номер электровоза и направление движения, помимо управления стрелками и светофорами. НЕРПА состоит из двух полукомплектов: подвижного (передающий) и неподвижного (приёмный). Передающий (1-5)-генераторы НЧ кодирования номера электровоза; (6-9)-генераторы НЧ управления стрелками и светофорами. В смесителе образуется общий низкочастотный спектр. Модулятор – устройство для наложения НЧ и ВЧ. Приёмный А1 и А2 устанавливаются на опасном участке таким образом, чтобы ВЧ сигнал проходил последовательно. Демодулятор – отделяет НЧ спектр. Ф – полосовые фильтры, настроенные на частоту определённого передающего полукомплекта; Т-триггер, которые блоком логики предварительно обнуляются. При сигнале определённый фильтр активизируется и перекидывает состояние триггера из о в 1. &-релейный ключ (пусковой) На блок логики подаётся два высокочастотных сигнала, следовательно он выполняет функцию направления движения электровоза. При движении от А1 к А2, поэтому х1=1, , следовательно y=1. При движении от А2 к А1, Х1=0, , следовательно у=0. Кн-ключ направления.
Требования к системам автоматизации шахтных компрессорных установок. Схема установки датчиков в системе автоматизации шахтных компрессорных установок (ШКУ). Система автоматизации ШКУ должна обеспечивать: 1) автоматическое программное управление работы компрессора после подачи команды «пуск» с ДП; 2) предусмотреть возможность одного из трех видов управления: а) автоматического дистанционного с пульта диспетчера; б) автоматического дистанционного из машинного зала компрессорной станции; в) местное управление. 3) автоматическое регулирование заданного давления в выходном коллекторе шахтного пневмопровода; 4) автоматическое регулирование заданной производительности в зависимости от количества потребляемой пневмоэнергии; 5) блокировку автоматического управления после перевода компрессора на местное управление или при его аварийной остановки; 6) автоматическую остановку компрессора при превышении температуры масла в системе смазки компрессора или привода, при исчезновении давления или его недостаточной величине в системе охлаждения компрессора или при к.з. в силовых цепях компрессора; 7) автоматическая экстренная остановка компрессора при исчезновении напряжения в цепях управления компрессора или при перегрузке его привода. Технологические датчики поршневого компрессора: Т1Р1-датчик температуры и давления атмосферного воздуха на входе первой ступени; Т2Р2-датчик температуры и давления воздуха после сжатия первой ступени; Р3Т3-датчик давления и температуры воздуха в выходном коллекторе; Р4Т4-датчик давления и температуры масла в системе смазки; Т5Р5-датчик температуры и давления охлаждающей жидкости; Т6-датчик температуры подшипников коленчатого вала компрессора и вала двигателя; Т7-датчик температуры обмотки двигателя; В1-вентиль сброса сжатого воздуха выходной ступени; В2-вентиль перепуска воздуха из одной во вторую ступень; В3-вентиль пуска охлажденной воды. Для поддержания давления воздуха на заданном уровне необходимо регулировать производительность компрессора. Регулирование производительности поршневого компрессора с нерегулируемым электроприводом может осуществляться 3 способами: 1) выпуском воздуха из нагнетательного трубопроводам в атмосферу или во всасывающий трубопровод (открытие клапана В1 и выброс части сжатого воздуха в атмосферу); 2) открытие перепускного клапана В2, т.е перепуском сжатого воздуха из 2-ой ступени в 1-ую ступень; 3) дросселированием воздуха во всасывающем трубопроводе. Запуск компрессора происходит при нулевой производительности и при min давлении. После нажатии кнопки «пуск» автоматический открывается В3 и в систему охлаждения КУ пускает охлажденную воду. Пока не сработает Р2Т2 сигнал на запуск двигателя система автоматически не подает. Запускается двигатель при открытом клапане В1. В зависимости от заданных параметров Р3 и Т3 клапан В2 автоматический открывается на заданную величину. При подаче сигнала на остановку компрессора система управления автоматический открывает клапан В1. Структура СУ поршневым компрессором состоит из встроенного контроллера, которому подключаются датчики и БУ. БУ формирует 4 выходных сигнала: системы смазки (СС); В1, В2, В3-включение вентилей. При нажатии кнопки «пуск» вкл-ся В1, затем подается сигнал на вкл-е В3 и СС. Только при соответствии сигналов с Р4Р5 заработает двигатель. В случае если Р3 в коллекторе превысит заданное значение БУ вкл-ет В2 (перепуск воздуха). Если давление Р3 достигает аварийного значения, то БУ вкл-ет В1. Система управления турбокомпрессором (ТК). Турбокомпрессор представляет собой конический ротор с лопатками, имеющий два рабочих колеса на каждой ступени, уменьшающихся в размерах от всасывания к нагнетанию в связи с уменьшением объема сжимающего воздуха. Через повышающий редуктор приводится в движение ЭД. В зависимости от габарита может быть использован СД или АД. После каждой ступени воздух поступает в воздухоохладители, охлаждаемые водой, а затем в следующий ступень. Сам ТК охлаждению не подвергается. Нагретая вода охлаждается в градирне и насосом снова подается в водопровод охлаждения. Технологические датчики турбокомпрессора: Q1 и Q2 – датчик расхода воздуха; Т1Р1-датчик температуры и давления на всасывающем трубопроводе первой ступени; Т2Р2-датчик температуры и давления промежуточной ступени; Т3Р3-датчик температуры и давления сжатого воздуха; Т4Р4-датчик температуры и давления системы смазки; Т5-датчик температуры подшипников; Т6-датчик температуры обмотки двигателя; Т7-датчик температуры охлаждающей жидкости. Регуляторы: В1, В2, В3, регулирующая заслонка, ПК – помпажный клапан. Помпаж – аварийная ситуация (вызывается разностью давлений). Производительность ТК контролируется датчиками расхода Q1 и Q2, установленными на всасывающем и нагнетательном воздухопроводах. Датчик расхода всасывающего воздухопровода измеряет полную производительность, и поэтому его показания используют для работы противопомпажного регулятора. Датчик расхода нагнетательного воздухопровода измеряет кол-во сжатого воздуха, поступающего в воздухозаборник и далее в пневмосеть. Регулирование производительности ТК для поддержания постоянного давления независимо от расхода воздуха из пневмосети может осуществляться 2 способами: изменением частоты вращения рабочих колес и дросселированием воздуха во всасывающем трубопроводе с помощью дроссельной заслонки.
|
||||
Последнее изменение этой страницы: 2016-09-18; просмотров: 540; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.175.166 (0.006 с.) |