Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Транспорт кислорода и углекислого газа кровью

Поиск

1. Вентиляция легких обеспечивает доставку кислорода из воздуха (РiО2 = 158 мм рт. ст.) к альвеолярному газу (РAО2 = 105-110 мм рт. ст.), выведение СО2 из альвеолярного газа (РAСО2 = 40 мм рт. ст.) в атмосферу.

Вентиляция у здорового человека приспособлена к метаболическим потребностям таким образом, что напряжение углекислоты в альвеолярном воздухе и артериальной крови (РаСО2) поддерживается на уровне 37-40 мм рт.ст., а напряжение кислорода в артериальной крови (РаО2) – в пределах 95-98 мм рт.ст.

Вентиляция легких зависит от дыхательного объема (в физиологических условиях 400-500 мл) и частоты дыхания (в норме 12-16 в ми). Произведение дыхательного объема на частоту дыхания (ЧД) составляет минутный объем дыхания (МОД).

В процессе дыхания не весь вдыхаемый воздух участвует в газообмене. Часть его, около 1/3 МОД, остается в мертвом пространстве (ОМП), которое включает в себя верхние дыхательные пути (глотка, трахея, бронхи) и невентилируемые альвеолы. Только 2/3 МОД достигает альвеол, что составляет минутную альвеолярную вентиляцию (МАВ). Зависимость между МОД и МАВ выражается формулой: МАВ = МОД – ОМП × ЧД. Следует отметить, что МАВ более важный показатель внешнего дыхания, чем МОД. Так при одышке свыше 30 в мин, несмотря на большой МОД альвеолярная вентиляция обычно снижается. При более низком МОД и замедлении дыхания МАВ может увеличиваться. Например, при МОД – 8000 мл, ЧД – 40 в мин и ОМП – 150 мл МАВ = 8000 – (150 × 40) = 2000 мл, а при МОД – 6000 мл, ЧД – 10 в мин и ОМП – 150 мл МАВ = 6000 – (150 × 10) = 4500 мл.

2. Газообмен в легких обеспечивает поступление кислорода из альвеолярного газа в артериальную (капиллярную) кровь (РАО2 = 100 мм рт. ст.), СО2 удаляется из венозной крови легочных капилляров (PvCO2 = 46 мм рт. ст.) в альвеолярный газ.

3. Малый круг кровообращения обеспечивает доставку кислорода из легких по легочным венам к левому предсердию, СО2 транспортируется из правого желудочка к альвеолам.

Большой круг кровообращения обеспечивает доставку кислорода по арте­риям к капиллярам (РСО2 уменьшается с 100 мм рт. ст. до 40), СО2 — из капил­ляров (РсСО2 — с 40 до 46 мм рт. ст.) в легкие.

Кислород переносится к тканям в виде его соединения с гемоглобином эритроцита и в незначительном количестве растворенным в плазме. Так как 1 г гемоглобина способен связать 1,34 мл О2, кислородная емкость крови при нормальном содержании гемоглобина (150 г/л) составляет приблизительно 20 мл О2 на 100 мл крови, то есть 20 об%. Кроме того, 100 мл крови переносят 0,3 мл кислорода, растворенного в плазме. Даже минимальное количество кислорода, переносимого плазмой, может играть важную роль при возрастании его парциального давления. Повышение РаО2 на 1 мм рт.ст. (0,13 кПа) увеличивает содержание кислорода в плазме на 0,003 об%. Таким образом, обычно, в 100 мл крови кислорода содержится около 2 об% (760 × 0,003), а в барокамере при давлении 3 атмосферы около 6 об%. Этого достаточно для обеспечения организма кислородом при выраженной анемии.

У здорового человека не весь гемоглобин связывается с кислородом. Это обусловлено физиологическим артерио-венозным шунтированием в легких, при котором часть крови проходит через невентилируемые альвеолы. Поэтому насыщение (сатурация) крови кислородом (SаО2) в норме соответствует 96-98%, а не 100%. Величина SаО2 зависит и от парциального напряжения кислорода в крови (РаО2), которое в норме равно 96-98 мм рт.ст. (42,8-43,1 кПа). Между изменениями РаО2 и SаО2 нет полного соответствия, так как SаО2 даже при дыхании 100% кислородом под давленим 2-3 атмосферы может достигнуть только 100%, а РаО2 при этом повысится до 400-600 мм рт.ст. (53-80 кПа), то есть в 3-4 раза.

4. Транскапиллярный обмен газов: кислород переходит из капиллярной крови в интерстициальную жидкость, а затем — в клетки, где в митохондриях, благодаря механизмам тканевого дыхания (НАД, ФАД, цитохромы, цитохромоксидаза), окисляет водород с образованием воды и энергии, которая аккуму­лируется в АТФ; СО2, образующийся в цикле Кребса, переходит в капиллярную кровь.

Обмен кислорода на тканевом уровне обеспечивается сохранением градиента давления, что приводит к переходу О2 из тканевых капилляров путем диффузии к месту утилизации (митохондрии клеток).

При недостатке кислорода организм компенсирует его дефицит, переключаясь на менее эффективный тип дыхания – анаэробный.

В упрощенной схеме оба пути можно представить следующим образом. Анаэробный путь: глюкоза – пировиноградная кислота – молочная кислота + 2 молекулы АТФ (16 кал. свободной энергии). Аэробный путь: глюкоза – пировиноградная кислота - СО2 + Н2О + 38 молекул АТФ (304 кал. свободной энергии).

Следовательно, большая часть проблем реанимации связана с необходимостью поддержания напряжения О2 в клетках на уровне, способствующем синтезу АТФ путем аэробного метаболизма. Клеточную гипоксию можно определить как состояние, при котором аэробный метаболизм нарушен.

Углекислота транспортируется кровью в трех основных видах – в растворенном, с бикарбонатом и в соединении с белками (главным образом с гемоглобином) в форме карбаминовых соединений. Если альвеолярная вентиляция становится недостаточной для элиминации выработанной организмом углекислоты, РаСО2 повышается (возникает гиперкапния).

Таким образом, благодаря системе внешнего дыхания кислород поступает в кровь, а СО2 выводится из нее; далее сердце перекачивает кровь, насыщен­ную кислородом, к тканям, а кровь, насыщенную углекислым газом, — к лег­ким.

Транспорт кислорода (DO2) зависит от сердечного индекса (СИ) и содержания кислорода в артериальной крови (CaO2).

DO2 = СИ х CaO2,

CaO2 = РAО2 x k + Hb x SaO2 x G,

где: k — коэффициент растворимости кислорода (0,031 мл/мм рт. ст./л), G — константа Гюфнера (равна количеству кислорода в мл, которое может присоединить 1 г гемоглобина; в среднем составляет 1,36 (1,34—1,39) мл/г).

При условии СИ = 2,5—3,5 л/мин/м2, транспорт кислорода составляет: DO2 = 520-720 мл/мин/м2.

Необходимо отметить, что множество патологических состояний, которые нуждаются в оказании неотложной медпомощи, сопровождаются дефицитом доставки и потребления кислорода, что обусловлено недостаточностью дыха­ния, нарушением кровообращения или анемией. В зависимости от механизма нарушений транспорта кислорода к тканям различают несколько видов гипок­сии.

Кроме своей основной, дыхательной, функции легкие осуществляют нереспираторные (недыхательные) функции механического и метаболического характера, которые связывают легкие с другими системами организма.

Нереспираторные (недыхательные) функции легких:

· защитная – легкие задерживают до 90% вредных механических и токсических продуктов (частицы диаметром болем 2 мкм), которые поступают из окружающей среды (важную роль при этом играют слизь дыхательных путей, которая содержит лизоцим и иммуноглобулины, макрофаги и альвеолоциты I та II типа);

· очистительная (фильтрационная) – легкие очищают кровь от механических примесей (агрегатов клеток, капель жира, мелких тромбов, бактерий, крупных атипичных клеток), которые задерживаются в них и подвергаються деструкции и метаболизму;

· фибринолитическая и антикоагулянтная – улавливание легкими тромбов, поддержание фибринолитической и антикоагулянтной активности крови;

· деструкция белков и жиров – легкие богаты протеолитическими и липолитическими ферментами; в легких продуцируется сурфактант – комплекс липопротеидов, который способствует стабильности альвеолярной ткани;

· участие в водном балансе – легкие удаляют за сутки (посредством перспирации) около 500 мл воды, поддерживая нормальную осмолярность крови и тканей удалением СО2 и соответственным изменением уровня осмотически активних карбонатов (15-30 мосмоль/сутки); вместе с тем, различные жидкости могут активно всасываться в легких, например адреналин уже через 30 с определяется в крови;

· избирательная деструкция биологически активных веществ (серотонин, гистамин, ангиотензин, ацетилхолин, норадреналин, кинины и простагландины), которые, выполнив свою роль в тканях, подлежат удалению из крови;

· детоксикационная функция – в легких осуществляется метаболизм некоторых лекарственных препаратов – аминазина, индерала, сульфаниламидов и др.;

· участие в теплопродукции и теплоотдачи – суточный теплообмен легких в нормальных условиях составляет 350 ккал, а в условиях критического состояния может быть увеличен в несколько раз;

· гемодинамическая функция – легкие являются резервуаром и одновременно прямым шунтом между правой и левой половинами сердца.

В нормальных условиях для выполнения этих функций необходимо не менее 10% общего поглощенного организмом О2. Во время критических состояний это количество возрастает во много раз.



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 717; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.135.24 (0.007 с.)