Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Банковский учет (учет векселей)Содержание книги Поиск на нашем сайте
Суть операции заключается в следующем. Банк или другое финансовое учреждение до поступления срока платежа по векселю (или иному платежному обязательству) приобретает его у владельца по цене, которая меньше суммы, указанной на векселе, то есть покупает (учитывает) его с дисконтом. Получив при наступлении срока векселя деньги, банк реализует процентный доход в виде дисконта. В свою очередь, владелец векселя с помощью его учета имеет возможность получить деньги хотя и не в полном объеме, но ранее указанного на нем срока. При учете векселя применяется банковский, или коммерческий, учет. Согласно этому методу проценты за пользование ссудой в виде дисконта начисляются на сумму, подлежащую уплате в конце срока. При этом применяется учетная ставка d.
, (2.12)
где n – срок в годах от момента учета до даты погашения векселя; – дисконтный множитель. Временная база, как правило, K = 360 дней, а число дней ссуды – точное: ACT/360 или 365/360.
Пример 2.10. Тратта (переводной вексель) выдана на сумму 1 млн. руб. с уплатой 17.11.08. Владелец векселя учел его в банке 23.09.08 по учетной ставке 20 % годовых (ACT/360). Найти дисконт.
Оставшийся до конца срока период составит 55 дней. Полученная при учете сумма (без уплаты комиссионных) равна:
руб.
Дисконт составит 30555,6 руб. [5, с. 32–33].
Наращение по учетной ставке Простая учетная ставка иногда применяется и при расчете наращенной суммы. Например, при определении суммы, которую надо проставить в векселе, если задана текущая сумма долга.
. (2.13)
Множитель наращения: [5, с. 34].
2.5. Прямые и обратные задачи при начислении процентов Для процентной ставки прямой задачей является определение наращенной суммы, обратной – дисконтирование. Для учетной ставки прямая задача – дисконтирование, обратная – наращение. Рассмотренные два метода наращения и дисконтирования (по ставке наращения i и учетной ставке d) приводят к разным результатам даже тогда, когда i = d [5, с. 34–36].
Сложные проценты Начисление сложных годовых процентов Формула наращения В средне- и долгосрочных финансово-кредитных операциях, если проценты не выплачиваются сразу после их начисления, а присоединяются к сумме долга, применяют сложные проценты. База для их начисления увеличивается с каждым шагом во времени. Процесс увеличения суммы долга происходит с ускорением. Наращение по сложным процентам можно представить как последовательные реинвестирования средств, вложенных под простые проценты на один период начисления. Присоединение начисленных процентов к сумме долга, которая послужила базой для их начисления, часто называют капитализацией процентов. Если проценты начисляются и капитализируются один раз в году, то в конце первого года проценты составят Pi, а наращенная сумма – P + Pi = P (1 + i). К концу второго года наращенная сумма будет P (1 + i) + P (1 + i) i = P (1 + i)2 и т. д. В конце n -го года
, (3.1)
где n – число лет, i – процентная ставка. Проценты за этот срок в целом таковы:
. (3.2)
Часть из них получена за счет начисления процентов на проценты. Она равна:
(3.3)
Рост по сложным процентам является процессом, соответствующим геометрической прогрессии с первым членом, равным P, и знаменателем (1 + i). Величину называют множителем наращения по сложным процентам. Время при наращении по сложной ставке обычно измеряется как ACT/ACT.
Рис. 3.1
Пример3.1. Какой величины достигнет долг, равный 1 млн. руб., через 5 лет при росте по сложной ставке 15,5 % годовых?
По формуле (3.1) получим
руб.
Пример. Остров Манхэттен, на котором расположена центральная часть Нью-Йорка, был продан за 24 доллара. Стоимость земли этого острова через 350 лет оценивалась примерно в 40 миллиардов долларов, т. е. увеличилась в 1,667 ∙ 109 раз. Такой рост достигается при сложной ставке всего 6,3 % годовых.
Формула 3.1 может применяться не только для годовой процентной ставки и срока, измеряемого в годах. Она используется и для периодов начисления, отличных от года. В этих случаях i означает ставку за один период начисления (месяц, квартал, полугодие), а n – число таких периодов [5, с. 43–45]. Если проценты на основной долг начисляются по ставке i, а проценты на проценты – по ставке r ≠ i, то
. (3.4)
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 341; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.139.164 (0.006 с.) |