Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Равновесная ситуация. Седл. точка выигрыш-ф-ии и седл. точка мат-цы игры. Св-ва равнозначности и взаимозаменяемости седл. точек мат-цы игры.Содержание книги
Поиск на нашем сайте Седл. точка выигрыш-ф-ии (седл. точка игры, ситуация равновесия, равновесная ситуация) – ситуация удовлетворительная для обоих иг-ов. Седл. точка мат-цы игры – выигрыш иг-ка А в ситуации равновесия; элемент, являющийся седл. точкой мат-цы игры, — минимальный в своей строке и максимальный в своём столбце. Т 1 Если Док-во. Т.к. Т 2 Если Док-во. Т.к.
9. Нижняя и верхняя цены игры. Соотношение между ними. Цена игры в чистыхстр-ях. Чистые опт.стр-ии. Полное и частное решения игры в чистыхстр-ях. Ксущ-ия цены игры в чистыхстр-ях. Соотношения между мн-вами опт.и максиминных (минимаксных) стр-ий. Стратегии
Теорема(критерий существования цены игры в чистых стр): для существования цены игры в чистых страт. необх и достат существование у матр этой игры седловой тчк. Доказательство: необходимость. Пусть сущ.цена игры в чистых страт, т.е. нижняя цена игры α совпадает с верхней Пусть Достаточноть. Пусть сущ седл тчк. Т1: Для элементов мат-цы (1) имеют место нерав-ва Док-во: По опр. (2) и (3) получаем: ОПР. Обозначим Т2. Для того чтобы ∃а цена игры в чистыхстр-ях, т. е. для того чтобы нижняя цена игры α равнялась верхней цене игры β, ⇔сущ-ие у мат-цы этой игры седл. точки. Док-во. Необх-ть. Пусть ∃ цена игры в чистых стр-ях, т.е. нижняя цена игры α совпадает с ее верхней ценой β: α = β. (1)Пусть Т 3. Справедливы следующие утв. 1. Каждая опт.стр.иг-каА является его максиминной стратегией, а каждая опт.стр.иг-каВ является его минимаксной стратегией. 2. В игре без седл. точек ни одна из максиминных и минимаксных стр-ий не является опт., Т.к. в этой игре вообще нет опт.стр-ий. 3. В игре с седловыми точками каждая максиминная и каждая минимаксная стр-ии соответственно иг-овА и В являются оптимальными. 10. Смешанные стр-ии. Геометрическая интерпретация мн-васмеш.стр-ий. Стр.иг-ка, состоящая в случайном выборе одной из его чистых стр-ий, называется смеш. стратегией.
Выпуклоемн-во – мн-во, которое с любыми своими двумя точками содержит и весь соединяющий их отрезок. Выпуклая комбинация точек х1,х2,…,хк – линейная комбинация Выпуклая оболочка мн-ваS (convS) – пересечение всех выпуклых мн-тв, содержащих мн-воS. Мн-во состоящее из к точек х1,х2,…,хк векторного пр-ва Rm, называется аффинно независимым, если мн-во точек х2-х1, х3-х1,хк-х1, линейно независимо. Если точки х1,х2,…,хк аффинно независимы, то их выпуклая оболочка называется (к-1) – мерным симплексом с к вершинами х1,х2,…,хк. Орты – взаимно-перпендикулярные векторы. Правая часть рав-ва (2) является выпуклой комбинацией орт А1,..., Ат и потому мн-во SA всех смеш.стр-ий геометрически представляет собой фундаментальный (m — 1)-мерный симплекс с т вершинами в точках А1,..., Ат, представляющих чистые стр-ии (выпуклая оболочка, натянутая на чистые стр-ии). При т = 1 игрок А обладает одной чистой стратегией A1 и потому смеш.стр. совпадает с чистой. Т.о., мн-восмеш.стр-ий состоит из единственного элемента A1: SA = При т = 2 игрок А имеет две чистые стр-ии: При т = 3 у иг-ка А три чистые стр-ии: При т = 4 мн-восмеш.стр-ий SA есть 3-мерный симплекс с четырьмя вершинами A1, A2, A3, А4, представляющий собой правильный тетраэдр. Аналогичная геометрическая интерпретация имеет место и для иг-ка В
|
||
|
Последнее изменение этой страницы: 2016-09-05; просмотров: 360; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.214 (0.007 с.) |