Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Австрийский физик. отказаться от назревшего решенияСодержание книги
Поиск на нашем сайте
Родился в Зальцбурге в семье камен- эмигрировать в Америку, отчаявшись щика. Окончил Политехнический добиться признания в академических Институт в Вене, оставался в нем на кругах на родине. Закончил свою Младших преподавательских долж- карьеру в должности профессора Ностях до 1835 года, когда получил Венского королевского имперского предложение возглавить кафедру университета. Эффект Зеемана Энергетические уровни и спектральные линии излучения атомов в магнитном поле расщепляются
1859 • открытие Кирхгофа—бунзена 1859 • спектроскопия 1896 • ЭФФЕКТ ЗЕЕМАНА 1913 • атом бора Долгая традиция изучения влияния магнитного поля на свет, испускаемый атомами, восходит к Майклу Фарадею. Сегодня неизбежность существования эффектов подобного влияния кажется нам очевидной, поскольку мы знаем, что электроны и другие атомы обладают спином, то есть ведут себя подобно микроскопическим электрически заряженным волчкам, образующим вокруг себя магнитное поле, и, по сути, представляют собой микроскопические магниты (см. опыт Штерна—герлаха). В конце XIX столетия, когда Питер Зееман решил провести серию опытов и проверить, обладают ли атомы магнитными свойствами, все было, однако, далеко не столь очевидно. Ученый поместил крошечный образец натрия между полюсами регулируемого магнита и стал изучать влияние магнитного поля на спектральные линии излучения атомов натрия (см. спектроскопия). Выяснилось, что при усилении магнитного поля спектральные линии в каждой группе частот размываются, то есть в них появляются новые частоты излучения. Так было впервые однозначно подтверждено существование эффекта, который впоследствии будет назван эффектом Зеемана. Чтобы понять его природу, проще всего обратиться к модели атома бора и задуматься о том, как именно испускается свет. Электрон совершает квантовый скачок с высшей орбиты на низшую (или, что то же самое, с высшего энергетического уровня на низший), испуская при этом фотон строго определенной частоты, соответствующей разности энергий между двумя энергетическими уровнями. Теперь, если предположить, что электрон в действительности представляет собой микроскопический магнит, а сам атом помещен во внешнее магнитное поле, энергия электрона будет зависеть от полярности его магнитного спина — если магнитное поле электрона на орбите однонаправлено внешнему магнитному полю, он обладает одной энергией, если же оно ориентировано в противоположном направлении, то другой. То есть электроны с противоположным магнитным спином, находящиеся на одной орбитали, будут обладать несколько различающимися энергиями и каждый энергетический уровень окажется расщеплен на два близких подуровня. соответственно, там, где раньше имелась единственная возможная энергия квантового перехода между двумя уровнями, теперь имеется четыре возможные энергии перехода. На спектре излучения это должно отразиться таким образом, что вместо одной четко выделенной спектральной линии (частоты излучения) в мощном магнитном поле появятся четыре близко расположенные равноудаленные спектральные линии (частоты). В первоначальном опыте Зееману не удалось различить эти четыре спектральные линии, поскольку несовершенство спектроскопа и недостаточная мощность магнита приводили к тому, что вместо расщепления наблюдалось простое размытие спектральных линий. Однако позже ученому удалось усовершенствовать аппаратуру и выявить четыре отдельных спектральных линии на месте одной размытой, как это и предсказывала теория. Для этого
потребовалось усилить магнитное поле, и Зееману даже удалось доказать, что расстояние между расщепленными линиями спектра напрямую зависит от напряженности магнитного поля. Эффект Зеемана впоследствии нашел очень полезное применение в астрономии, поскольку по расщеплению линий в спектре излучения небесных тел можно судить о напряженности их магнитных полей. Например, именно по эффекту Зеемана астрофизикам удалось установить, что пятна на солнце являются следствием возмущения мощных магнитных полей вблизи его поверхности — солнечных магнитных бурь.
ПИТЕР ЗЕЕМАН (Pieter Zeeman, 1865-1943) — нидерландский физик. Родился в 3oHHew^pe (Zonnemaire) в семье священника и всю жизнь провел на родине за исключением периода обучения в Лейденском университете. Завершив в Лейдене под научным руководством Хендрика Лоренца (Hendrick Lorenz, 1853-1928) работу по выявлению теоретически предсказанного Лоренцем расщепления спектров атомов в магнитном поле, в 1900 году занял кресло профессора физики Амстердамского университета и занимал его до выхода на пенсию. Прославился как искуснейший экспериментатор и конструктор измерительных приборов, обеспечивавших революционную по тем временам точность измерений. В 1902 году разделил с Лоренцем Нобелевскую премию по физике. В 1918 году дал экспериментальное подтверждение принципа эквива -лентности гравитационной и инер-циальной масс. Эффект Комптона
При рассеянии на свободных электронах фотоны теряют энергию, причем количество потерянной энергии зависит от угла рассеяния ЭФФЕКТ КОМПТОНА В первые десятилетия ХХ века ученые постепенно приходили к осознанию того, что объекты микромира обладают одновременно свойствами и частиц, и волн (см. принцип дополнительности). Начало этому процессу положило предложенное Альбертом Эйнштейном объяснение фотоэлектрического эффекта, согласно которому любое электромагнитное излучение, включая свет, представляет собой пучки фотонов. Открытый же американским физиком Артуром Комптоном эффект рассеяния фотонов на свободных электронах стал еще одним подтверждением квантовой природы фотона. Эксперимент, проделанный Комптоном, описать несложно. Пучок электромагнитных лучей (Комптон использовал рентгеновские лучи) направляется на кристалл, после чего измеряются энергии и угол отклонения рассеянных лучей. В рамках классической теории взаимодействия лучей с веществом (до постулирования принципов квантовой механики) энергия отраженного излучения не должна отличаться от энергии исходного излучения. Комптон же получил принципиально иную картину: энергия рассеянной волны отличалась от энергии исходной волны, и эта разница зависела от угла рассеяния, достигая максимума при угле 90°. Единственным способом дать разумную интерпретацию полученным Комптоном результатам было рассматривать взаимодействие лучей с атомами как столкновение исходящей частицы (фотона) с электроном. Как и два бильярдных шара, эти две частицы, взаимодействуя, отскакивают друг от друга. А поскольку электрон движется медленно, он в общем случае должен приобретать энергию при этом столкновении, в то время как фотон эту же энергию теряет. После публикации Комптоном в начале 1923 года полученных результатов среди физиков осталось мало сомневающихся в реальности фотонов. Сегодня эффект Комптона находит применение в астрофизике: гамма-лучи от космических объектов подвергаются многократному рассеянию, пока их энергия не падает до длин волн рентгеновской части спектра, после чего их можно анализировать на стандартных рентгенографических установках. Подобный детектор был в 1991 году выведен НАСА на орбиту в составе Гамма-лучевой обсерватории имени Комптона.
АРТУР ХОЛЛИ КОМПТОН (Arthur Holly Compton, 1892-1962) — американский физик. Родился в Вустере, штат Огайо (Wooster, Ohio), в семье профессора философии. В 1916 году окончил Принстонский университет. В первые годы после окончания университета работал в частной промышленной лаборатории, где участвовал в создании первых ламп дневного света. Вернувшись к академическим исследованиям, большую часть времени проработал в Чикагском университете, где в 1923 году стал профессором физики. За открытие и объяснение эффекта Комптона он был удостоен Нобелевской премии по физике за 1927 год. Во время Второй мировой войны Комптон руководил металлургической лабораторией при Чикагском университете, участвовавшей в работе по созданию «уранового котла» в рамках Манхэттенского проекта. После окончания Второй мировой войны Комптон много своего времени стал уделять общественно-политической деятельности. В частности, с 1946 по 1948 год состоял членом Комиссии по высшему образованию при президенте США. Эффект Кориолиса Во вращающейся системе отсчета (например, на поверхности Земли) наблюдателю кажется, что тела движутся по изогнутой траектории. Иногда этот эффект объясняют действием некой фиктивной силы — силы Кориолиса
Распределенное движение Уравнения Равноускоренного
Движения Центробежная сила Законы механики ньютона
ЭФФЕКТ КОРИОЛИСА Теория Относительности Представьте, что кто-то, находясь на Северном полюсе, бросил мяч кому-то, кто находится на экваторе. Пока мяч летел, Земля провернулась вокруг своей оси и ловящий успел сместиться к востоку. Если бросающий, целясь мячом, не учел этого движения Земли, мяч упал западнее (или левее) ловящего. С точки зрения человека на экваторе, получается, что мяч летел левее, чем надо, с самого начала — как только его выпустил из рук бросающий — и до тех пор, пока не приземлился. Согласно законам механики ньютона, чтобы движущееся прямолинейно тело отклонилось от изначально заданной траектории, на него должна действовать какая-то внешняя сила. Значит, ловящий на экваторе должен сделать вывод, что брошенный мяч отклонился от прямолинейной траектории под действием некоей силы. Если бы мы смогли посмотреть на летящий мяч из космоса, мы бы увидели, что на самом деле никакая сила на мяч не действовала. Отклонение же траектории было вызвано тем, что Земля успела повернуться под мячом, пока он летел по прямой. Таким образом, действует в подобной ситуации какая-то сила или нет, — это целиком зависит от системы отсчета, в которой находится наблюдатель. И подобное явление неизбежно возникает, когда есть какая-нибудь вращающаяся система координат — например, Земля. Для описания этого явления физики часто используют выражение фиктивная сила, имея в виду, что сила реально отсутствует, просто наблюдателю во вращающейся системе отсчета кажется, что она действует (другой пример фиктивной силы — это центробежная сила). И противоречий здесь нет никаких, поскольку оба наблюдателя единодушны относительно реальной траектории полета мяча и уравнений, ее описывающих. Расходятся они лишь в терминах, которые они используют для описания этого движение. Фиктивная сила, которая действует в приведенном выше примере, называется силой Кориолиса — в честь французского физика Гаспара Кориолиса, впервые описавшего этот эффект. Интересно, что именно сила Кориолиса определяет направление вращения вихрей циклонов, которые мы наблюдаем на снимках, полученных с метеоспутников. Изначально воздушные массы начинают прямолинейно устремляться из областей высокого атмосферного давления в области пониженного атмосферного давления, однако сила Кориолиса заставляет их закручиваться по спирали. (С тем же успехом можно утверждать, что воздушные потоки продолжают двигаться прямолинейно, но, поскольку Земля под ними поворачивается, нам, находящимся на поверхности планеты, кажется, что они движутся по спирали.) Вернемся к примеру с бросанием мяча с полюса к экватору. Нетрудно понять, что в Северном и Южном полушариях сила Кориолиса действует на движущееся тело в прямо противоположных направлениях. Именно поэтому в Северном полушарии вихри циклонов закручены против часовой стрелки, а в Южном — по часовой стрелке.
Отсюда же происходит и неистребимая фольклорная премудрость, согласно которой вода в канализационных отверстиях ванн и раковин в двух полушариях вращается в противоположных направлениях, — якобы это обусловлено эффектом Кориолиса. (Помню, когда я сам был студентом, мы всей группой, включая одного аргентинца, не один час провели в мужском туалете физического факультета Стэнфордского университета, наблюдая за потоками воды в раковине в надежде подтвердить или опровергнуть эту гипотезу.) На самом же деле, хотя и верно, что сила Кори-олиса действует противоположно в двух полушариях, направление закручивания воды в сливной воронке лишь отчасти определяется этим эффектом. Дело в том, что вода долгое время течет по водопроводным трубам, при этом в потоке воды образуются течения, которые хоть и трудно увидеть простым глазом, продолжают закручивать струю воды и тогда, когда она льется в раковину. Кроме того, когда вода уходит в сливное отверстие, могут создаваться похожие течения. Именно они определяют направление движения воды в воронке, поскольку силы Кориолиса оказываются гораздо слабее этих течений. В обычной жизни направление закручивания воды в сливной воронке в Северном и Южном полушариях больше зависит от конфигурации канализационной системы, чем от действия природных сил. Однако все-таки нашлась группа экспериментаторов, которой хватило терпения повторить этот опыт в «чистых» условиях. Они взяли идеально симметричную раковину сферической формы, устранили канализационные трубы, позволив воде проходить сквозь сливное отверстие свободно, оборудовали сливное отверстие автоматической заслонкой, которая открывалась лишь после того, как в воде успокаивались любые остаточные токи, — и увидели-таки эффект Кориолиса в действии! Несколько раз им даже удалось увидеть, как вода сначала под слабым внешним воздействием закручивалась в одну сторону, а затем силы Кориолиса брали верх, и направление спирали менялось на противоположное!
ГюстЛБ ГАсПАр КОриОлис «кориолями».) Основной научный (Gaspard Gustave de Coriolis, интерес ученого лежал в области 1792-1843) — французский физик и разработки движущихся частей разинженер. Родился в Париже. Окончил личных механизмов. В частности, престижную Политехническую школу, Кориолис — один из изобретателей которую со временем возглавил в подшипников. Однако его интересы не качестве директора. (Он оснастил носили чисто прикладного характера: аудитории «водяными холодильни- занимаясь, в общем-то, практической ками» — прообразами кондицио- механикой, он дал современные неров, — которые работают до сих определения работы и кинетической пор, и студенты так и называют их энергии. Эффект Тиндаля
В замутненных средах фиолетовый и синий свет рассеиваются сильнее всего, а оранжевый и красный — слабее всего
эффект тиндаля Эффект Тиндаля был открыт в результате исследования ученым взаимодействия световых лучей с различными средами. Он выяснил, что при прохождении лучей света через среду, содержащую взвесь мельчайших твердых частиц — например, пыльный или задымленный воздух, коллоидные растворы, мутное стекло, — эффект рассеяния уменьшается по мере изменения спектральной окраски луча от фиолетово-синей к желто-красной части спектра. Если же пропустить через мутную среду белый, например солнечный, свет, который содержит полный цветовой спектр, то свет в синей части спектра частично рассеется, в то время как интенсивность зелено-желто-красной части света останется практически прежней. Поэтому, если смотреть на рассеянный свет после прохождения им замутненной среды в стороне от источника света, он покажется нам синее, чем исходный свет. Если же смотреть на источник света вдоль линии рассеяния, то есть через замутненную среду, источник покажется нам краснее, чем он есть на самом деле. Именно поэтому дымка от лесных пожаров, например, кажется нам голубовато-фиолетовой. Эффект Тиндаля возникает при рассеянии на взвешенных частицах, размеры которых превышают размеры атомов в десятки раз. При укрупнении частиц взвеси до размеров порядка 1/20 длины световых волн (примерно от 25 нм и выше) рассеяние становится полихромным, то есть свет начинает рассеиваться равномерно во всем видимом диапазоне цветов от фиолетового до красного. В результате эффект Тиндаля пропадает. Вот почему густой туман или кучевые облака кажутся нам белыми — они состоят из плотной взвеси водяной пыли с диаметром частиц от микронов до миллиметров, что значительно выше порога рассеяния по Тиндалю. можно подумать, что небо кажется нам сине-голубым благодаря эффекту Тиндаля, но это не так. В отсутствие облачности или задымления небо окрашивается в сине-голубой цвет благодаря рассеянию дневного света на молекулах воздуха. Такой тип рассеяния называется рассеянием Рэлея (в честь сэра Рэлея; см. критерий рэлея). При рассеянии Рэлея синий и голубой свет рассеивается даже сильнее, чем при эффекте Тиндаля: например, синий свет с длиной волны 400 нм рассеивается в чистом воздухе в девять раз сильнее красного света с длиной волны 700 нм. Вот почему небо кажется нам синим — солнечный свет рассеивается во всем спектральном диапазоне, но в синей части спектра почти на порядок сильнее, чем в красной. Еще сильнее рассеиваются ультрафиолетовые лучи, обусловливающие солнечный загар. Именно поэтому загар распределяется по телу достаточно равномерно, охватывая даже те участки кожи, на которые не попадают прямые солнечные лучи.
дЖОН тиидлль (John Tyndall, 1820-1893) — ирландский физик и инженер. Родился в Лайлин-Бридж, графство Карлоу (Leighlin Bridge, County Carlow). По окончании средней школы работал топографом-геодезистом в военных организациях и на строительстве железных дорог. Одновременно окончил механический институт в Престоне. Уволен с военно-геодезической службы за протесты против плохих условий труда. Преподавал в Куинвуд-колледже (Хэмпшир), одновременно продолжал самообразование. В 184851 гг. слушал лекции в Марбургском и Берлинском университетах. Вернувшись в Англию, стал преподавателем, а затем и профессором Королевского института (Royal Institution) в Лондоне. Основные труды ученого посвящены магнетизму, акустике, поглощению теплового излучения газами и парами,
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 355; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.255.135 (0.017 с.) |