Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Спектр электромагнитного излученияСодержание книги
Поиск на нашем сайте
ИЗЛУЧЕНИЕ ЧЕРНОГО ТЕЛА ПОСТОЯННАЯ ПЛАНКА КВАНТОВАЯ МЕХАНИКА УРАВНЕНИЕ ШРЁДИНГЕРА ПРИНЦИП НЕОПРЕДЕЛЕННОСТИ ГЕЙЗЕНБЕРГА Макс Планк — один из основоположников квантовой механики — пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами (см. уравнения максвелла) и атомами и тем самым разрешить проблему излучения черного тела. Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами) и лишь на отдельных волновых частотах. Энергия, переносимая одним квантом, равна: Е = Ну, где V — частота излучения, а И — элементарный квант действия, представляющий собой новую универсальную константу, получившую вскоре название постоянная Планка. Планк же первым и рассчитал ее значение на основе экспериментальных данных Н = 6,548 х 10-34 Дж-с (в системе СИ); по современным данным Н = 6,626 х 10~34 Дж-с. Соответственно, любой атом может излучать широкий спектр связанных между собой дискретных частот, который зависит от орбит электронов в составе атома. Вскоре Нильс Бор создаст стройную, хотя и упрощенную модель атома бора, согласующуюся с распределением Планка. Опубликовав свои результаты в конце 1900 года, сам Планк — и это видно из его публикаций — сначала не верил в то, что кванты — физическая реальность, а не удобная математическая модель. Однако, когда пять лет спустя Альберт Эйнштейн опубликовал статью, объясняющую фотоэлектрический эффект на основе квантования энергии излучения, в научных кругах формулу Планка стали воспринимать уже не как теоретическую игру, а как описание реального физического явления на субатомном уровне, доказывающее квантовую природу энергии. Постоянная Планка фигурирует во всех уравнениях и формулах квантовой механики. Она, в частности, определяет масштабы, начиная с которых вступает в силу принцип неопределенности гейзенберга. Грубо говоря, постоянная Планка указывает нам нижний предел пространственных величин, после которого нельзя не принимать во внимание квантовые эффекты. Для песчинок, скажем, неопределенность произведения их линейного размера на скорость настолько незначительна, что ею можно пренебречь. Иными словами, постоянная Планка проводит границу между макромиром, где действуют законы механики Ньютона, и микромиром, где вступают в силу законы квантовой механики. Будучи получена всего лишь для теоретического описания единичного физического явления, постоянная Планка вскоре стала одной из фундаментальных констант теоретической физики, определяемых самой природой мироздания.
Постоянная Ридберга Длины волн излучения атома определенного типа зависят от разности обратных квадратов расстояний между квантовыми числами
1859 • ОТКРЫТИЕ КИРХГОФА—БУНЗЕНА 1859 • СПЕКТРОСКОПИЯ 1864 • СПЕКТР ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ 1890 • ПОСТОЯННАЯ РИДБЕРГА 1913 • АТОМ БОРА Во второй половине XIX столетия ученые поняли, что атомы различных химических элементов излучают свет строго определенных частот и длин волны, и такое излучение имеет линейчатый спектр, благодаря чему их свет имеет характерную окраску (см. открытие кирхгофа—бунзена). Чтобы убедиться в этом, достаточно взглянуть на уличные фонари. Обратите внимание, что на крупных автомагистралях яркие лампы дневного света имеют обычно желтоватый оттенок. Это следствие того, что они заполнены парами натрия, а в видимом спектре излучения натрия интенсивнее всего проявляются две спектральные линии желтого оттенка. С развитием спектроскопии стало ясно, что атом любого химического элемента имеет свой набор спектральных линий, по которым его можно вычислить даже в составе далеких звезд, как преступника по отпечаткам пальцев. В 1885 году швейцарский математик Иоганн Бальмер (Johann Balmer, 1825-98) сделал первый шаг в направлении расшифровки закономерности расположения спектральных линий в излучении атома водорода, эмпирически выведя формулу, описывающую длины волн в видимой части спектра атома водорода (так называемая спектральная линия Бальмера). Водород — самый простой по структуре атом, и поэтому математическое описание расположения линий его спектра было получено раньше всего. Четыре года спустя шведский физик Йоханнес Ридберг обобщил формулу Бальмера, распространив ее на все участки спектра электромагнитного излучения атома водорода, включая ультрафиолетовую и инфракрасную области. Согласно формуле Ридберга, длина световой волны, которую излучает атом водорода, равна
= R
f1- 1), где Я — постоянная Ридберга, а п1 и п2 — натуральные числа (при этом п1 < п). В частности, при п1 = 2 и п2 = 3, 4, 5,... наблюдаются линии видимой части спектра излучения водорода (п2 = 3 — красная линия; п2 = 4 — зеленая; п2 = 5 — голубая; п2 = 6 — синяя) — это так называемая серия Бальмера. При п1 = 1 водород дает спектральные линии в ультрафиолетовом диапазоне частот (серия Лай-мана); при п2 = 3, 4, 5,... излучение переходит в инфракрасную часть электромагнитного спектра. Значение Я было определено экспериментально. Изначально выявленная Ридбергом закономерность считалась чисто эмпирической. Однако после появления модели атома бора стало ясно, что она имеет глубокий физический смысл и работает отнюдь не случайно. Рассчитав энергию электрона на п-й орбите от ядра, Бор установил, что она пропорциональна именно -1/п2).
ИОХАННЕС РОБЕРТ РИДБЕРГ (Johannes Robert Rydberg, 1854-1919) — шведский физик. Родился в Лунде. После окончания местного университета и защиты диссертации в 1879 году остался работать в Лунде на всю жизнь, сначала в качестве доцента, а с 1901 года — профессора. Основные работы посвятил изучению ПЕРИОДИЧЕСКОЙ
|
||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 368; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.72.55 (0.008 с.) |